Self-Expanding Cannula with Small Incision for Mechanical Circulatory Support

UNIVERSITY of MARYLAND SCHOOL OF MEDICINE

Background

Current State of Problem

Mechanical circulatory support (MCS) is vital to manage heart and lung diseases, the leading causes of death in the United States.

- Heart failure \Rightarrow 6.2 million
- Lung disease \Rightarrow 1 in 6 annual deaths

Unfortunately, MCS system deployment is highly invasive and convoluted.

Complications: Bleeding from the heart, corporeal trauma, delayed incision site healing, postponed resuscitation, and require skilled surgeons

Design Requirements

Support Flow Rate: 3-6 L/min Pressure Drop < 20 mmHg Dynamic Diameter: 15-32 Fr

Our Solution

Our solution is to develop a novel cannulation device that is inserted at a minimal diameter and utilizes a peripheral dilation balloon for rapid deployment.

Goals: Improve access to timely life-saving care, patient recovery, cannula site healing, and quality of life post-operation

Methods

Coated Stent Design Balloon Design 1. Internal tubing perforation - awl tool 1. Stitch cannulation tip and external • Crosshair perforations 1 cm apart tube to opposite side of stent 2. Securing balloon to tubing 2. Coat stent in ChronoSil AL (10% w/v in • Hot glue, gorilla glue, shrink wrap tetrahydrofuran) (most successful) • Dip 3 times from the tip to 3 cm 3. Securing tubing to 30 mL syringe of the external tube 4. Internal tubing close at one end 3. Once dried insert guide wire into the 5. Aluminum stent & external tubing cannulation apparatus

 Expand with balloon and retain shape post-expansion

Calculations for Balloon Design

sheath

4. Insert guidewire into introducer

Table 1. Poiseuille's Law Calculations							 Viscosity of blood in large vessels 				
Case	1	2		3	4		 follows Poiseuille's Law Vessel of interest: femoral artery Constant radius/length once dep Avg. adult rate of blood flow: 5 L, ΔP > 20 mmHg ⇒ reduced cardia 				
Viscosity (mPa*s)	3	4		3	4						
Radius (mm)	5	5		5	5						
Length (cm)	40	40		40	40						
Pressure Drop (mmHg)	1.8336	2.4	445	3.667	4.89		output and increased afterload		d		
Flow Rate (L/min)	3	,	3	6	6		• Less blood pumped \Rightarrow more fo			orce	
Table 2. Free-Body Analysis		ens	E _{stent} (GPa)		E _{tubing} (MPa) 500		Pa) E _{artery} (kPa)	d_{min} (mm)	d _{max} (mm)	d _{arte}	
$\sigma = \frac{F}{A}$ $E = \frac{\sigma}{\varepsilon}$ $\varepsilon = \frac{L-L_0}{L_0}$			4	53-76			262.8	5	10		
$\varepsilon = \frac{10mm - 5mm}{5mm} = 1 \Rightarrow T$ $E_{stent} = \sigma_{stent}$ $53 \times 10^9 Pa = \frac{F}{A_{stent}}$ $A_{stent} = \frac{\pi}{4} d_{max}^2 = \frac{\pi}{4} (0.000)$ $A_{stent} = 7.85 \times 10^{-5}$ $F_{stent_{max}} = 4,162,610$	$E = \sigma$ 2 $(100)^{2}$ $(100)^{2}$ $(100)^{3}$ $(100)^{3}$ $(100)^{3}$ $(100)^{3}$ $(100)^{3}$ $(100)^{3}$	$E_{artery} = \frac{F}{A_{artery}}$ $262.8 \times 10^{3} Pa = \frac{F}{\frac{\pi}{4}(0.008)^{2} m^{2}}$ $F_{artery} = 13.21 N$ $E_{tubing} = \frac{F}{A_{tubing}}$ $500 \times 10^{6} Pa = \frac{F}{\frac{\pi}{4}(7.85 \times 10^{-5})^{2} m^{2}}$ $F_{tubing} = 2.42 N$				4,	$F_{stent_{max}} > F_{tubing} + F_{artery}$ $F_{balloon} = F_{tubing} + F_{artery}$ $4, 162, 610 > 2.42 + 13.21$ $4, 162, 610 N > 15.63 N$ $F_{stent_{max}} > F_{balloon}$				

Advisors: Dr. Dong Han, UMD SOM & Dr. Kimberly Stroka, UMD BIOE

	Balloon Cannula Design	Coated Stent Cannula Design
Materials	Latex balloon, silicone tubing, shrink wrap, hot glue	Coated stent, tear-away induce tube
Methods	Fasten latex balloon to internal balloon tubing, insert into external cannulation tube along with stent	Attach coated stent to tube and stent, then insert cannulation t inducer
Function	Uses balloon to expand tube, then allow stent to maintain diameter when balloon is removed	Insert inducer into patient and away inducer