DEPARTMENT OF MECHANICAL ENGINEERING

Motivation, Goal, Impact

Wildfires are an increasingly devastating global issue, causing destruction to ecosystems, property, and human lives. To help combat this issue, our team has designed a device to help the UMD Crossfire Team in the XPRIZE Wildfire Competition Challenge: To develop autonomous systems capable of detecting and extinguishing wildfires within 10 minutes of ignition over a 1000 km^2 area.

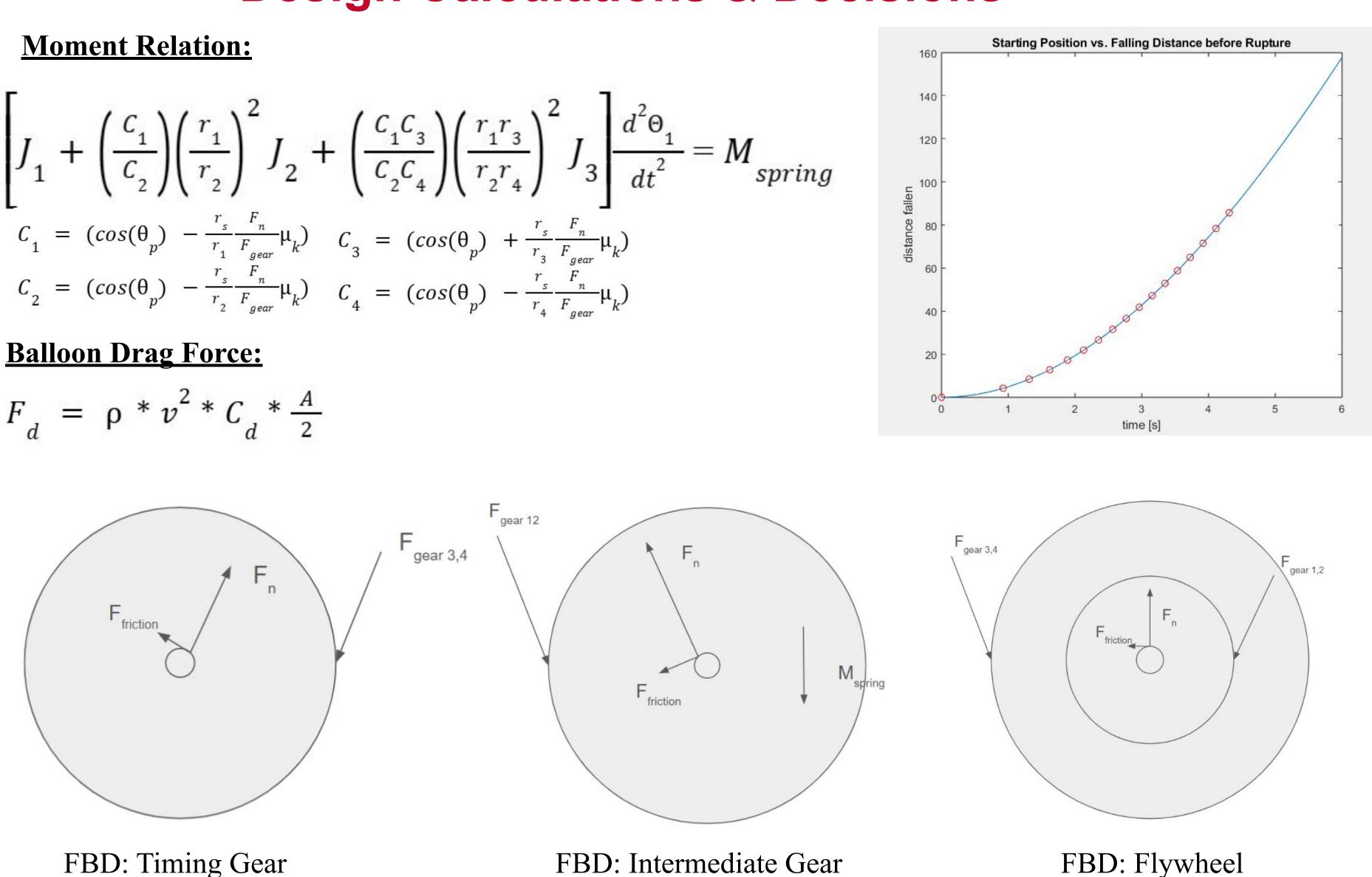
Design Goals:

- Develop a low cost, lightweight, and incredibly precise mechanical timer
- Provide a robust, yet eco-friendly solution that can be mass-deployed during wildfires

The overall impact of our solution aids in early-stage suppression of wildfires to guarantee faster containment to protect both the environment and communities.

Requirements

- popping a 100% latex water balloon
- 1. Fully mechanical solution capable of 2. Total mass (including water balloon) must not exceed 10.25 kg
- 3. Must achieve consistent and reliable balloon rupture within a 5m window above the ground from a variety of drop heights (10-100 meters)
- 4. Timing delay must start only after balloon separates from the drone and must be adjustable for varying deployment conditions
- 5. System must be durable enough to withstand deployment forces and vibrations without accidental triggering
- 6. Must prioritize minimal environmental impact
- deployment system


Design Calculations & Decisions

$$\begin{bmatrix} J_{1} + \left(\frac{C_{1}}{C_{2}}\right) \left(\frac{r_{1}}{r_{2}}\right)^{2} J_{2} + \left(\frac{C_{1}C_{3}}{C_{2}C_{4}}\right) \left(\frac{r_{1}r_{3}}{r_{2}r_{4}}\right)^{2} J_{3} \end{bmatrix} \frac{d^{2}\Theta_{1}}{dt^{2}} = M_{spring}$$

$$C_{1} = (\cos(\theta_{p}) - \frac{r_{s}}{r_{1}} \frac{F_{n}}{F_{gear}} \mu_{k}) \quad C_{3} = (\cos(\theta_{p}) + \frac{r_{s}}{r_{3}} \frac{F_{n}}{F_{gear}} \mu_{k})$$

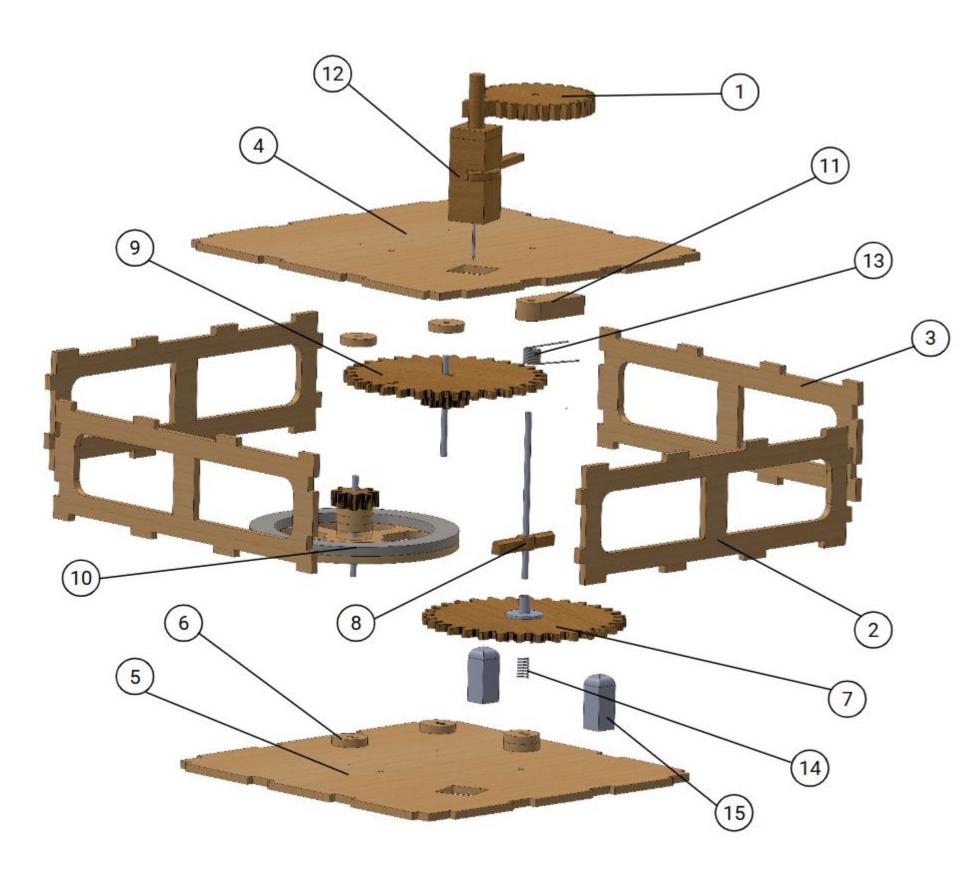
$$C_{2} = (\cos(\theta_{p}) - \frac{r_{s}}{r_{2}} \frac{F_{n}}{F_{gear}} \mu_{k}) \quad C_{4} = (\cos(\theta_{p}) - \frac{r_{s}}{r_{4}} \frac{F_{n}}{F_{gear}} \mu_{k})$$

 $F_{d} = \rho * v^{2} * C_{d} * \frac{A}{2}$

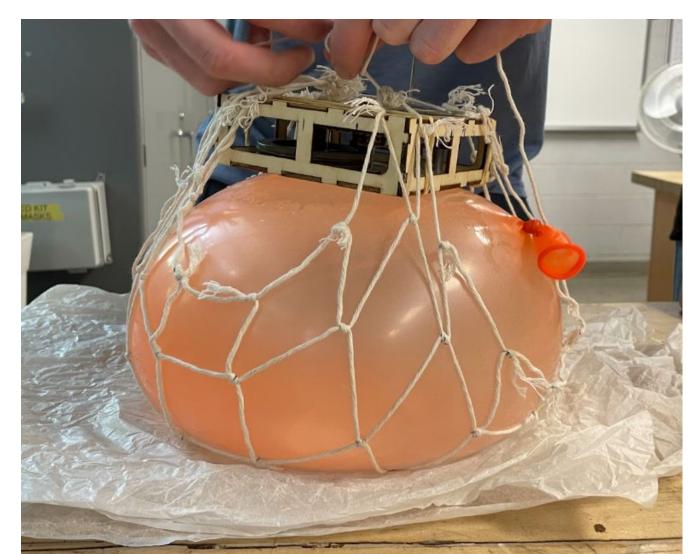
FBD: Timing Gear

FBD: Intermediate Gear

BALLOON BOMBERS Ruptron


Dahlia Andres, Ben Burnett, David Kenney, Tzvi Meth, Mike Rowe, Kevin Whiten

7. Must allow simple adjustment of timing and easy integration with the drone's


ITEM NO.	PART NUMBER	QTY.
1	DIAL	1
2	LONG SIDE PLATE	2
3	SHORT SIDE PLATE	2
4	TOP PLATE	1
5	BOTTOM PLATE	1
6	BUSHING	6
7	TIMING GEAR SUBASSEMBLY	1
8	FLAG SUBASSEMBLY	1
9	INTERMEDIATE GEAR SUBASSEMBLY	1
10	FLYWHEEL SUBASSEMBLY	1
11	SPACER BLOCK	1
12	RUPTURE MECHANISM	1
13	TORSION SPRING	1
14	COMPRESSION SPRING	1
15	PILLAR	2

Rupture Mechanism:

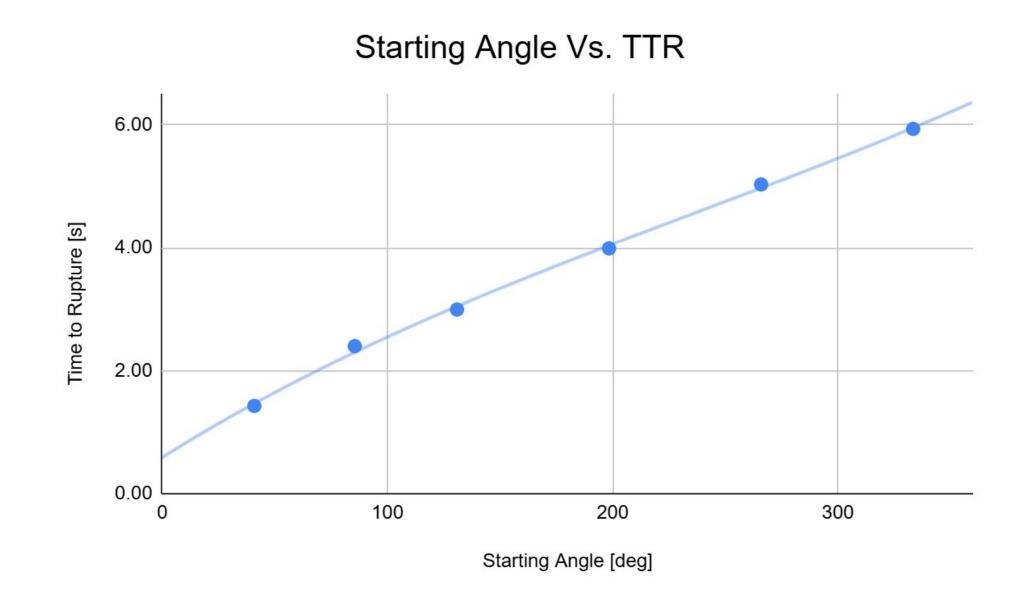
- Spring loaded plunger activated by a mechanical trigger (scythe)
- Spring stores ~ 4.47 N of force when compressed
- Releases pin when rotated 20°

High Fidelity Prototype (Ruptron 3000)

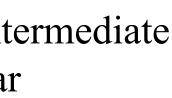
Position (Initial						95% Rupture Height
Angle)		' °	Standard	Expected Speed at	Standard Deviation of	Range
	Average TTR (s)	Height (m)	Deviation (s)	Average TTR (m/s)	Rupture Height (m)	[4ơ] (m)
Position 1 (333.4°)						
	5.94	154.87	0.27	47.07	12.58	50.32
Position 4 (265.9°)						
	5.03	114.51	0.19	42.10	8.14	32.55
Position 7 (198.4°)						
	3.99	74.17	0.13	35.28	4.42	17.67
Position 10 (130.9°)						
	3.00	42.72	0.11	27.66	3.01	12.03
Position 12 (85.9°)						
	2.40	27.74	0.11	22.64	2.54	10.16
Position 14 (40.9°)						
	1.43	9.93	0.16	13.80	2.22	8.87

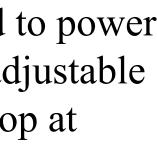
A. JAMES CLARK SCHOOL OF ENGINEERING

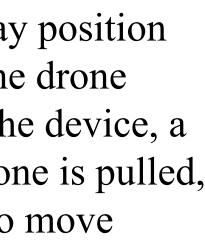
Final Design


Timing Mechanism:

- Includes Flywheel, Intermediate Gear, and Timing Gear subassemblies
- Torsion spring is used to power timing and provides adjustable delay for balloon to pop at specific elevation
- Dial holds 16 positions for different drop heights


Full Assembly:


- User presets time delay position before loading onto the drone
- Once drone releases the device, a pin attached to the drone is pulled, allowing the system to move


Prototype & Test Results

