

A. JAMES CLARK SCHOOL OF ENGINEERING

Optimizing a Beer Brewing Process with Custom Compounds and Recycle Streams in ASPEN Plus

Brian Diethrich, Zach Litman, Elizabeth Norris, Amir Shojaedini, Brendon Tromble, Shon Uy

- OUR GOAL -

Establish and optimize a beer brewing process that utilizes recycling streams to reduce CO₂ emissions and conserve energy

BACKGROUND

- Beer brewing is an extensive process, requiring many steps to turn barley, hops, yeast, water, and other inputs into malt, wort, and eventually, beer.
- This project focuses on designing a continuous beer brewing process that models key steps such as barley drying, mashing, fermentation, and packaging in Aspen Plus. Emphasis is placed on energy integration, resource recovery, and economic feasibility to develop a scalable and environmentally conscious solution.

• Throughout this project, two major proposed alternatives to the standard brewing process were evaluated and modified for implementation: the use of a recycle stream for CO₂ capture and reuse, and the use of a recycle stream for thermal energy in the form of water vapor for the conservation of energy and reduction of heat utility.

Figure 1: Process flow diagram for the system designed in Aspen

ALTERNATIVES & SENSITIVITY ANALYSIS

- We implemented two recycle streams into the typical beer brewing process, one for carbon capture and recycling and one for heat utility and water reduction.
 - **Carbon Capture**: Allows for the storage and reuse of CO₂ by collecting CO₂ from fermenter output, and cycling it Ο through an adsorber column and packed bed reactor.
 - Heat Utility/Water Input: Captures and cools waste water vapor from the dryer, cycles through a heat exchanger and use it to preheat the incoming water used in the soaking stage. Reduces the need for freshwater and conserves energy by utilizing the latent heat of the water vapor.

Figure 2: Sensitivity analysis of CO₂ capture performance in the beer brewing process. .

REACTIONS OF INTEREST & KINETICS

- The primary reaction during fermentation is the **conversion of glucose into ethanol and carbon** dioxide: $C_6H_1O_6 \rightarrow 2C_2H_5OH + 2CO_2$
- Monod Kinetics Model (for growth rate of yeast): r = r * S / K + S
- Ethanol & CO, Production (rate produced during fermentation from glucose): r_e = Y_e * r_s, r_{co2} = Y_{co2} * r_s
- Biomass Growth (Yeast): r_x = μ_{max} S / K_s + S
- Luedeking-Piret model (for product formation): $r_{a} = \alpha X + \beta r_{y}$

TEST RESULTS (WHAT-IFS, BELLS AND WHISTLES)

What-If: Water Recycle Stream

Parameter	Before Recycle	After Recycle	Reduction (%)
Water Input (mol/s)	1.07	1.03	3.74%

Observations

- Captured water vapor from dryer.
- Recycled via heat exchanger back to soaking tank.
- Lowered water usage and reduced heating utility.

Bells & Whistles: Innovation Feature 1

What-if: Multi-Stage Drying Efficiency

Stage	Temp (C)	Time (min)	Final Moisture (%)	Energy Use (kJ/kg H2O)
High Temp	70	40	7	1700
Low Temp	50	50	5	1250
Total	-	90	5	2950

Observations

- Two-phase drying reduced moisture to 5%, better than single-stage 70°C drying (10%).

• Starch Hydrolysis (Mashing): $(C_6H_{10}O_5)n + nH_2O \rightarrow nC_6H_{12}O_6$

DESIGN OUTPUTS

Material Flow Calculations

Stage	Input Flow Rate	Output Flow Rate
Drying (Barley)	3.75677 L/min (dry bar)	149,350 L/min (evap H2O)
Mashing	2.47481 L/min (starch) + 0.347395 L/min (H2O)	11.8266 L/min (wort)
Lautering	11.8258 L/min (out as wastewater)	≈0.00828 L/min (to next step)
Fermentation	0.00205 mol/s (wort)	0.00205 mol/s (beer)
Conditioning Output	0.00205 mol/s (beer)	0.000155 mol/s (aged beer)

CO ₂ Capture and Reuse Efficiency				
Parameter	Value			
CO₂ Produced	9.99995 kg/hr			
CO₂ Captured	0.00156 kg/hr			
CO₂ Capture Efficiency	0.015%			

CO₂ Scrubber System

- Scrubs CO₂ from fermenter off-gas using a packed-bed absorber.
- Captured gas is compressed and reused for carbonation.
- Reduces greenhouse emissions and external CO₂ purchase.

• Higher product quality with lower risk of starch damage.

• Slightly higher energy use, but improved performance and enzyme preservation.

Bells & Whistles: Innovation Feature 2

Water Chemistry Control

- Adjusting mineral content (Ca²⁺, Mg²⁺, Cl⁻, SO₄^{2−}) for:
 - Enzyme optimization in mashing.
 - Flavor tuning of final beer.
- Minerals added directly in Aspen feed stream.

CONCLUSIONS & RECOMMENDATIONS

Key innovations included:

- Enzyme-driven hydrolysis and Monod-based fermentation kinetics
- Recycle streams for water recovery (reducing input by ~3.74%)
- Heat exchanger networks to lower utility demands
- CO₂ capture for reuse in carbonation

Recommendations for future development:

- Improve CO₂ scrubbing efficiency
- Incorporate mineral composition control for flavor consistency
- Explore by-product valorization (e.g., animal feed, biogas)
- Add advanced process controls and predictive analytics
- Consider more specialized brewing simulation software