

Team B18: High-Flux Hemofiltration System for Toxin and Solute Removal

Advisors: Dr. Goldberg, Fischell Department of Bioengineering, University of Maryland; Dr. Grazioli, Medical Director, Cardiac Surgery Intensive Care Unit; Dr. King, Associate Program Director, Nephrology Fellowship Program, University of Maryland School of Medicine

Motivation

Objective: Develop an **ECMO-hemodialysis** hybrid system to better treat acute poisoning presentations to effectively remove toxins from blood volume at a high flux rate.

- > Address limitations in current extracorporeal therapies for managing life-threatening toxin exposures and critical conditions.
- \succ **Decrease strain** on ICUs due to increase in severe poisonings.
- > Increase flow rates used in the standard of care in order to address non-dialyzable toxins.
- Current standard of care has blood flow rates of only 100-500 mL/min.

Figure 1.2: Number of acute poisoning Emergency Dept., Jan. 2000 to Dec. 2010 (Resier et al. 2020).

Methods

Design Requirements

THE FISCHELL DEPARTMENT of BIOENGINEERING

Cade A. Bergeron, Daiyaan J. Kabir, Farshad Mashhadi, Colleen Simmerly, Zeyu Zhong

Final Design

- Efficient integration of 3D printed parts (e.g. three-way adapters) optimizing tubing system for seamless functionality at arterial and venous termini
- \succ Careful design preventing membrane fouling, maintaining flux rates of 3-5 L/min in clinical settings.
- > 12-filter design **promises improved efficiency** and future advancements in membrane filtration technology for clinical applications.

Figure 3.2: 12-filter system setup in parallel at the UMB laboratory.

system.

Results

- > 300 mL dH₂O
- > 200 mL Glycerin
- Xanthan Gum (0.01% [w/v])
- Soluble Starch (0.01% [w/v]) \succ

- Grazioli A, Shah SR, Rabin J, et al. High-efficiency, high-flux in-line hemofiltration using a high blood flow extracorporeal circuit. Perfusion. 2020;35(4):351-355. doi:10.1177/0267659119871232 King JD, Kern MH, Jaar BG. Extracorporeal Removal of Poisons and Toxins. Clin J Am Soc Nephrol. 2019;14(9):1408-1415. doi:10.2215/CJN.02560319 Santiago MJ, Sánchez A, López-Herce J, et al. The use of continuous renal replacement therapy in series with extracorporeal membrane oxygenation. Kidney Int.
- 2009;76(12):1289-1292. doi:10.1038/ki.2009.383 Resiere D, Kallel H, Oxybel O, et al. Clinical and Epidemiological Characteristics of Severe Acute Adult Poisoning Cases in Martinique: Implicated Toxic Exposures and Their Outcomes. Toxics. 2020;8(2):28. Published 2020 Apr 9. doi:10.3390/toxics8020028

