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Motivation Test Results Bells and Whistles

To manage the required cleaning and emptying of the

This project aims to explore the technical and economic Process Optimization Length Sensitivity semi-batch reactor at an industrial scale it was
feasibility of producing high-performance polymers like Sensitivity analyses were performed to ==C2F4 e=HCL ==CF2 oroposed that two semi-batch reactors work in
polytetrafluoroethylene (PTFE) due to its exceptiona refine key reactor parameters: Reactor 03> 000 harallel—one operating while the other is cleaned—
chemical and physical properties. PTFE has a complex 4 (PFR) Length Optimization Figure 1 QOO; ; 00 Figure 2. This option, though more expensive, was
synthesis that requires high energy inputs, hazardous shows that a plug flow reactor (PFR) A 0002 = selected.to minimize,safety risks associated V\,/ith TFE
Intermediates, and costly separation units. These length sensitivity analysis. Batch go.ls 0.0015 5 storage. Each reactor will operate in 6-hour cycles
challenges pose concerns for efficiency, profitability, and Polymerization temperature and S 01 0.001 i;j aIIowiné sufficient time for cleaning. To support |
safety for small and medium-scale plants. PTFE, a forever pressure in the semi-batch 0.05 0.0005 continuous operation, ammonium p.ersulfate 'S NOW
chemical, belongs to thg group of per- and pollyflluoroalkyl polymerlzatlon reactor were. nge mass O e as s y 0 added at a constant rate of 5 kg/hr instead of being
substances (PFAS), which can be dangerous if improperly fraction of PTFE peaked at 85 °C— Length (Meters) oreloaded. At 228.32 kg/hr PTFE output and a density
disposed of. The project uses Aspen Plus to simulate the above which side reactions reduced e Lo SN of 2.2 g/crﬁ"' each. batch produces 0.6227 m? of PTFE
production of tetrafluoroethylene (TFE) and polymerize it conversion—while pressure remained C(',gnlf,rfrsiéi_ ?ﬁfg'eng?|efgth'm§yr22f'r:,n£§ﬁca| at scale. setti.ng the n,1inimum volume for eacﬁ reactor. |
into PTFE, addressing these issues and improving process largely stabilizing, with a maximum the derived residence time provides a clear design target for

: ‘s : scaling up the reactor while maintaining high PTFE yield. _
sustainability. yield at 26.34 atm. Figure 2 (left). ASPEN

Plus representation of
a parallel batch

Design Analysis Final Design T

set up allows for

. : 5 ti PTFE
Reactor 1: Chloroform Synthesis Reactor 1 Reactor 2 S?Qd'ﬂé‘t?é‘ﬁ while one
CH, + 4Cl, — CHCI; + 4HCI + byproducts T is being cleaned the
Chloroform is synthesized by the exothermic gas-phase g;h;;'tfo':_ ful
reaction of methane and chlorine in a continuous tubular

reactor
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reaction rate”?™"® = — o * Vlspecies][CLy) In conclusion, the PTFE plant was ultimately not

Reactor 2: Chlorodifluoromethane Synthesis $ _— %r’cc;frl:c?glieadrgcen}(rzttgfeI;’rjl'anlélI;yn?tﬁreogilé;cheggst Igétlraal\lfxxll

CCl, + HF — CHCIF, + HCI + byproducts | |

The4proposed reactiorf mechanis)r/n, composed of four Reactor 3 Reactor 4 | materials. The process proved to be highly complex,

assumed-to-be elementary steps, two of which are ? Involving numerous unit operations such as reactors,

reversible, follows the path: separators, and heaters, each requiring significant

(1) HF + SbCl; — SbCI,F + HCI ﬁiﬁ)@ — opti.mizatio-n.. To minimize waste apd maximize product
(2) SbCI,F + CHCI; — SbCl; + CHCI,F g I E purity, additional separators were incorporated, which
(3) SbCl,F + CHCILF — SbCl; + CHCIF, helped drive reactions to completion with minimal
(4) SbCI,F + CHCIF, — SbCl; + CHF, byproduct formation. Energy efficiency was improved
- through the implementation of a heat exchanger

Rate Ky, Ky, 3 Ko, ks |Kq r% network, resulting in a 31.66% reduction in energy

Constant |foward  |backward | forward | backward costs. Scaling up the process proved to be more

Value  |3.6"10°|8.0"10° |3.2*10%|2.1*10° ]4680|175 i successful with an annual production rate of 5000
Figure 3 (above): Full process flow diagram of PTFE production developed in ASPEN Plus, including all major unit operations metric tons—more than double the origina| target of

g;agltgr f:h';’;?'ys's{; 4 HCI + bybroducts cach reprossning amajor reaction step i the overall PTFE producton pathway. - o o eurausarEiE 2000 metric tons
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The set of elementary steps proposed are shown below, Refe rences
where CF,” is a highly reactive radical intermediate. 1. Broyer, E.; Bekker, A. Y.; Ritter, A. B. Kinetics of the Pyrolysis of Chlorodifluoromethane.
Reactor 4: Polymerization of TFE s 01 0rgH10 1021100073008, L 2

(1) CHCIF, — CF,* + HCI  (6) C,Fg — 2C,F, The polymerization of TFE to PTFE can be modeled as a suspension radical oroess. Mathemmtisal Problome i Engineorng 2014 2014 110, | Cymeraton

(2) CF,*+ HCl — CHCIF, (7) CyF,+ CF," — C3Fg polymerization. This reaction series can be treated as four reaction phases: chain 5 oo, . Dl Gorio M. Basile. G.. & Carra. S. Kinetics of chloroform fiuorination by HF

(3) 2CF2* —> C2F4 (8) C3F6 — C2F4 + CFZ* initiation, chain grOW’[h, chain tranSfer, and chain termination. céta/yzed by an;‘imlc’)nypenta’chl;ri.de. tJo,urr.w,al of Fluorine Chemistry, 44(1), 87-111. 2001.

2451; géF‘ﬁ — ZgFFz* (9) CoFy + HCI— H(CF,),Cl Kinetios and Gatalysis 2010, 51 (5), 635643 Niipe 4o, org/10. 1134/50023 155410050034
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