DEPARTMENT OF MECHANICAL ENGINEERING

Rachel Fitz, Justin Fletcher, Katherine Forng, Avery Groeninger, John Murtagh, Joseph Paparello

Problem Definition

- Our team is designing an adjustable sonar mount that integrates with an ASV designed for oyster monitoring
 - Mount platform holds a sonar sensor and a GoPro camera
 - Our mount can extend and retract autonomously from above the surface of the water to 3 feet below the surface of the water
 - The payload platform can tilt the payload 16-45 degrees
 - The mount will need to be able to withstand high drag forces created by the boat moving up to 2 m/s through the water
 - The project is being used to reduce dredging to minimize damage to the ecosystem in the bay

Model name: moving_stage Study name: Static 1(-Default-) Plot type: Static nodal stress Stress

eformation scale: 17.953

Design Calculations & Analysis

3312e+07 2.944e+0 2577e+07 2.209e+07 1.842e+07 1.474e+07 1.107e+0 7.390e+06 Yield strength: 5.515e+07

FEA Results: Displacement

FEA Results: Von Mises Stress

Finite Element Analysis (18x Scale):

- 70N force applied at bottom
- Maximum deflection at the bottom is 0.2563in (6.51mm), under worst case conditions
- Deflection elsewhere very close to zero (1e-30mm)
- Yield strength of 6061 Aluminum is 5.515e+07
- Max stress is ~1.8e+07
- No failure from stress

Distance Per Revolution of Motor

1.4 in/rev

26 rev

Force along extension axis	
Weight	
Total	
Pivot Mechanism Motor	
Drag force at 45 degrees (moving while retracting)	
Torque	
Extension Force	
Pulley Reduction (GR)	
Sprocket Radius (r)	
Sprocket Torque (Ts)	
Sprocket Force (Fs)	
Extension Speed	
Angular Velocity Sprocket (ws)	
Distance/Sprocket Rev	
Extension Velocity (V)	

Extension Motor Force Demands

TEAM 22 See Food

6.8 lbs

5 lbs

12 lbs

9.7 lbs

36 in-lb

0.90 in

16 in-lb

18 lb

3.9 rad/s

5.6 in/rev

3.5 in/s

Drag Force

$$F_D = \frac{1}{2} C \rho A V^2$$

Sprocket Force

$$F_s = \frac{T_m \times GR}{r}$$

Extension Velocity

$$V = r \times \frac{\omega_m}{GR}$$

Motor Revolutions

$$N_m = GR \times \frac{36''}{2\pi r}$$

- Initial concept sketch
- Combines main elements and ideas from team
- Helped define some of the problems and constraints to Identifies critical components later overcome in and supporting hardware prototypes: mechanisms and clearances

Final Design

- Telescoping box tube assembly extension
- Pivoting payload platform base
- Extension transmission: stepper motor connected to belt & pulley drives sprocket
- Sprocket meshes with holes in moving stage, like a rack & pinion mechanism
- Payload angle controlled by mirrored

Prototype & Test Results

- Made of household materials
- Served as a proof of concept

- Tested waterproofing of motors and soldered connections for the servo motors
- Integrated brackets and circuitry with the current ASV
- Determined that motors produce enough torque to
- extend, retract, and tilt with payload while submerged
- Compiled lessons learned for future implementation

