

 Front Wheels DP Middle Wheels DP

Back Wheels DP

-Total DF

Zero DF

Subsurface Ice and Terrain In-situ Surveyor

• Grouser: 95

TRIDENT

Drills

Mast

Mission: Characterize potential water ice and volatiles that could be harvested by deploying a large-scale prospector in the Permanently Shadowed Regions (PSRs) at the lunar south pole to support the Artemis program returning a human presence to the Moon.

Rover Design

-200 7.5 10 12.5 15 17.5 20 22.5 25 2.5 θ , [deg] Directional MMRTG Antenna WEB Navigation mini-MMRTG Communication Relay Rover SITIS Rover

Overall Mass 540 kg costing \$890M

Power and Thermals

Power Breakdown

Time

Science and Avionics

Science Experiments TRIDENT						
I		Purpose	Specification	Drill		
I	Radar Imager for Mars' Subsurface Experiment	Characterize subsurface regolith and identify water-ice content	Sends periodic radar pulse via antenna every 4cm of rover movement			
I	Near InfraRed Volatile Spectrometer System	Mass spectral analysis to identify CO2, H2O, H2S, and other H- bearing compounds	Can identify water in lunar sample when concentration is >0.5% by weight			
I	Neutron Spectrometer System	Characterize H2 content in lunar subsurface to determine drilling points	Detects H2 up to 1m under the lunar surface			
	The Regolith and Ice Drill for Exploration of New Terrains	Break down and shoot up lunar regolith for spectral analysis and water-ice extraction	Drills up to 2m under the lunar surface			
	Water-Ice Extraction Experiment	Separate and contain liquid water from lunar regolith sample	Produces ~37g of liquid water every 42 minutes			

modes	Power(w)	(hr)	Energy(w-nr)	
Driving	234.3	8.5	1991	
Drilling/Sampling	168.8	1.7	287	
Analyzing	69.8	.85	58.33	
WIEE	29.1	.85	24.7	Pc
Communication	10	10	100	So MA
Total			2461	

Thermal Management

• The MMRTG emits 1890 Watts of heat; 1000 Watts carried to the rover to maintain the temperature of the rover at 293 K

 The Hot loop is operated at 	Working Fluid	Chemical Formula	Operational Temperature [°C]	Heat Capacity [J/kg-K]
<u>450K</u> while the Cold loop	Terphenyl /quaterphenyl	C18H14/ C24H18	80 to 385	1500 to 2000
is kept at <u>293K</u>	Methylcyclohexane /trimethylpentane	C7H14/ C8H18	-115 to 175	1300 to 2500

- Two pumps are used to guarantee a steady flow of fluids with maximum mass flow rate of 10 g/sec
- ~1 squared-meter Carbon Fiber radiators (8 kg) with emissivity 0.85 to dissipate excess heat
- Copper pipes with thermal

fluids

Communication

	UHF	Ka-Band
Max Data Rate	1 Mbps	2 Mbps
Direction	Two-way	Two-way
Antenna	Omni- directional	High Gain Parabolic Directional
Gain	-2.04 dB	35.8 dB
System Power	10W	15W
RF Power	1W	1.5W
Link Margin	6.13dB	6.07dB

Command and Data Handling

- GR740 Processor (250 MHz, interfaces with FPGA).
- RTEMS OS with cFS/F' software and data storage in 1 TB Mercury SSDR.

the rover

conductivity of 401 J/kg*K, diameter 3/8 inch and a length of 40 m are used to carry the

Navigation and Autonomy

• Use lidar for terrain-relative navigation source to correct drift errors from IMU, which provides motion/position data, recalibrate IMU frequently to combat position error compounding

• Autonomous Path planning