
●

● Izhikevich Neuron Model[5]

● Exponential Decay Synapse Model
● Euler method to solve ODE
● Implemented digitally using

Verilog[6]
● 16-bit resolution
● 20MHz clock frequency
● 2-4-4-2 structure
● Weights were pre-trained using

snnTorch
● Achieved 95% accuracy

Project Introduction
Input: EEG signal acquisition via scalp electrodes

Output: Classified blinks for cognitive state analysis

● Inspired by OpenBCI Cyton; extended for full
integration and low power!!

Aim:
● Optimized design for a high input-channel

throughput and minimal area
● Designed for embedded, mobile, and wearable

biosignal systems
● Open-source hardware contribution to 

neuromorphic computation

● A Skywater 130nm Process Custom CMOS IC

What is this project about?

Performs on-chip analog 
signal conditioning and 
delta-modulation-based spike 
encoding, and routes the 
resulting spike trains into a 
Spiking Neural Network (SNN) 
for real-time classification of 
biomedical signals.
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● Challenge:
Sleep and attention states are hard to
quantify in real-time

● Physiological Indicators:
Eye blinks (amplitude and time)[1]

● Need:
This project addresses the need for an
energy-efficient, real-time, low-power
system capable of decoding such biosignals
and is suitable for wearable devices

Motivation

Applications
● Sleep and attention monitoring in

high-risk environments (e.g., driving,
flying) [2]

● Cognitive performance analysis
● Neurofeedback training
● Biological stimulation (such as nerve

or muscle activation)
● Treatment of neurodegenerative

disorders through targeted
neuromodulation [3]

ConstraintsGoals

Ethics and Standards 

Design Analysis

● To design and simulate a successful
neural interface circuit that reads in
EEG signals, encodes the analog
signals into spikes, and extracts
features to identify soft and hard
blinks

● To ultimately create a layout of a
VLSI chip design that can be
realistically implemented using
Skywater 130 technology

● Health and safety: Must not have
adverse biological effects

● Manufacturability: Must be Compatible
with Sky 130 process

● Sustainability: reduce power 
consumption

● Cultural/social: device must be
adaptable to all types of headwear

● Legal/regulatory: adhere to IEEE
standards

IEEE 2010-201 Recommended Practice for Neurofeedback Systems

IEEE 1058-2003 Standard for Scalp Electroencephalography

IEC 60601-1 Safety and Essential Performance Standard

ISO 10993 Biological Evaluation of Medical Devices Part 1: Evaluation and 
Testing Within a Risk

IEEE 2010-2023 Standards for EEG Neurofeedback Systems

IEEE 1801-2018 Standard for Design and Verification of Low Power Integrated 
Circuits

IEEE 360-2022 Standard for Wearable Consumer Electronic Devices
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Asynchronous Delta 
Modulation

Fig. 3: Delta Modulation

Fig. 7: Neural Amplifier Frequency Response 

Table of Specifications

VDD 1.8V

Open loop Gain 35.3dB

Closed Loop Gain 42dB

Bandwidth 0.3 Hz to 400 Hz

Resolution 2 bit (Up/Down)

Spike Width 1 bit

Minimum Refractory Period 3 ns

Fig. 6: Membrane potential of IZ neuron

Amplifier:
● High resistance pseudo

resistor elements to to allow
for bandlimiting

● Midband Gain: 40dB
● Wide-band amplification 10

Hz to 10 kHz

Fig. 5: Synaptic current of exponential decay synapse

Fig. 8: Training curve of IZ-SNN with MNIST dataset

Architecture and Design

AFE [4] SNN

Buffer:
● LFP-recording bandwidth
● Bandwidth: <1 Hz–300 Hz
● Uses pseudo resistor 

elements to form poles

Bandwidth:  0.3 - 400 Hz

Fig. 1:  INA Schematic

Fig. 2: Buffer Schematic

Delta Modulation:
● Converts filtered analog

signals into spikes
● Uses async delta modulation
● Outputs ON/OFF spikes

based on threshold crossings
● Adjustable threshold levels

for higher encoding
resolution

Fig. 4: Simulated Output of the Spike Encoding using Delta Modulation from Filtered Raw Data

Fig. 9: Delta Modulation - Spike Encoder Output

Input Signal + Reference Levels

Up & Down Spikes


