DEPARTMENT OF MECHANICAL ENGINEERING

Motivation, Goal, Impact

Problem Statement

- Farmers must sample soil yearly to measure nutrient and pH levels
- Multiple 1-cup samples per acre. • Manual sampling is tedious, costly, and labor-intensive

Goal

- Automate soil sampling and storage to save farmers time and labor.
- Note: Navigation was not a focus this semester.

Impact

- Saves 55+ hours of manual labor annually for our stakeholder.
- Across Maryland's 2M+ acres, automation could save ~1 million hours of labor per year.

Functional Requirements

- Autonomous farmland navigation Autonomous soil sample collection and storage • Location and timestamp tracking for each sample
- 3.5+ hours runtime without refueling/maintenance • Collect 2–5 samples per acre

Design Specifications

- Runtime: \geq 3.5 hours
- Size: $\leq 4' \times 4' \times 4'$
- Sampling time: ≤ 1 minute/sample • Sampling depth: 6–8 inches • Sample volume: \geq 8 fl oz

Design Calculations & Decisions

Sampling Mechanism

- <u>Probe Tube</u>: Lower extraction force, easy to clean. Insertion aided by auto hammer.
- <u>Auger</u>: Easier insertion but much higher extraction force; harder to clean.

→ Selected **Probe Tube** for easier sample removal and simpler design

Storage Subsystem

- <u>Revolving System (w/ or w/o</u> Chain): Simple, scalable, and space-efficient.
- <u>Conveyor Belt</u>: Better density but more complex to implement.

→ Selected **Revolving Storage with a chain** for simplicity and reliable operation.

Height Adjustment Mechanism | Calculations <u>Rack & Pinion</u>: Easy control, difficult fabrication.

- <u>Lead Screw</u>: Good force transmission, limited length options.
- <u>Belt Drive</u>: Robust, scalable, compatible with worm gearbox (no holding torque needed).

→ Selected **Belt-Driven Linear** Actuator for robustness and scalability.

TEAM Big Dirt Soil Sampling Robot

Dustin Eidson, Peter Frazier, Keenan Machalek, Anna Shi, Andrew Simone, Sam Tyson

Requirements

Subassemblies:

(1) Frame

- Galvanized steel beams, L-bracketed and welded for strength
- Rectangular base with vertical supports
- Polyethylene sheet top

(2) Storage

- 9 soil collection cups mounted on a chain with two sprockets
- Stepper motor drives one sprocket; the other free-spins
- Design allows soil to fall directly into cups without moving the sampler

(3) Height Adjustment Mechanism

- Belt-driven linear actuator (~70 cm span)
- Stepper motor + 20:1 worm gearbox for holding torque without power
- Converts motor rotation into linear probe motion

(4) Sampling Mechanism

- Mounting plate with U-bolted auto hammer and probe tube
- Auto hammer reduces insertion force
- Disk and arms eject soil into positioned storage cups during probe ascent

- <u>Drive Motor</u>: 13 nCm at 1400 rpm Based on geometry, force, speed
- <u>Sampler Motor</u>: 3 nCm at 80 rpm Based on mass, friction
- <u>Belt Width</u>: 1.02 cm Based on insertion force,
- material strength • <u>Battery</u>: 12V, 18 Ah
 - Based on sampling energy needs and distance between samples

Prototype & Test Results

Testing: % Weight Removed During Extraction

Setup

Results

4	Trial	Main Sample Weight (g)	Leftover Weight (g)	% Weight Extracted
	1	172	1.7	99.02
	2	201	0.8	99.60
1	3	149	2.3	98.48
	4	159	4.6	97.19
	5	162	4	97.59
and a	6	134	5.8	95.85
	7	178	6.5	96.48
0	8	144	7	95.36
	9	113	6.7	94.40
	10	177	11.4	93.95
1	11	147	4.9	96.77
	12	164	5	97.04
ALT.	Average	158.33	5.06	96.81%
No.	Variance	532.42	7.97	3.04%

% Weight Extracted per Trial

Trial

Conclusion

- Achieved 96.81% average soil removal.
- No redesign needed; disk and tube clearances are effective.
- Confirmed consistent and reliable extraction performance.

