Problem Definition

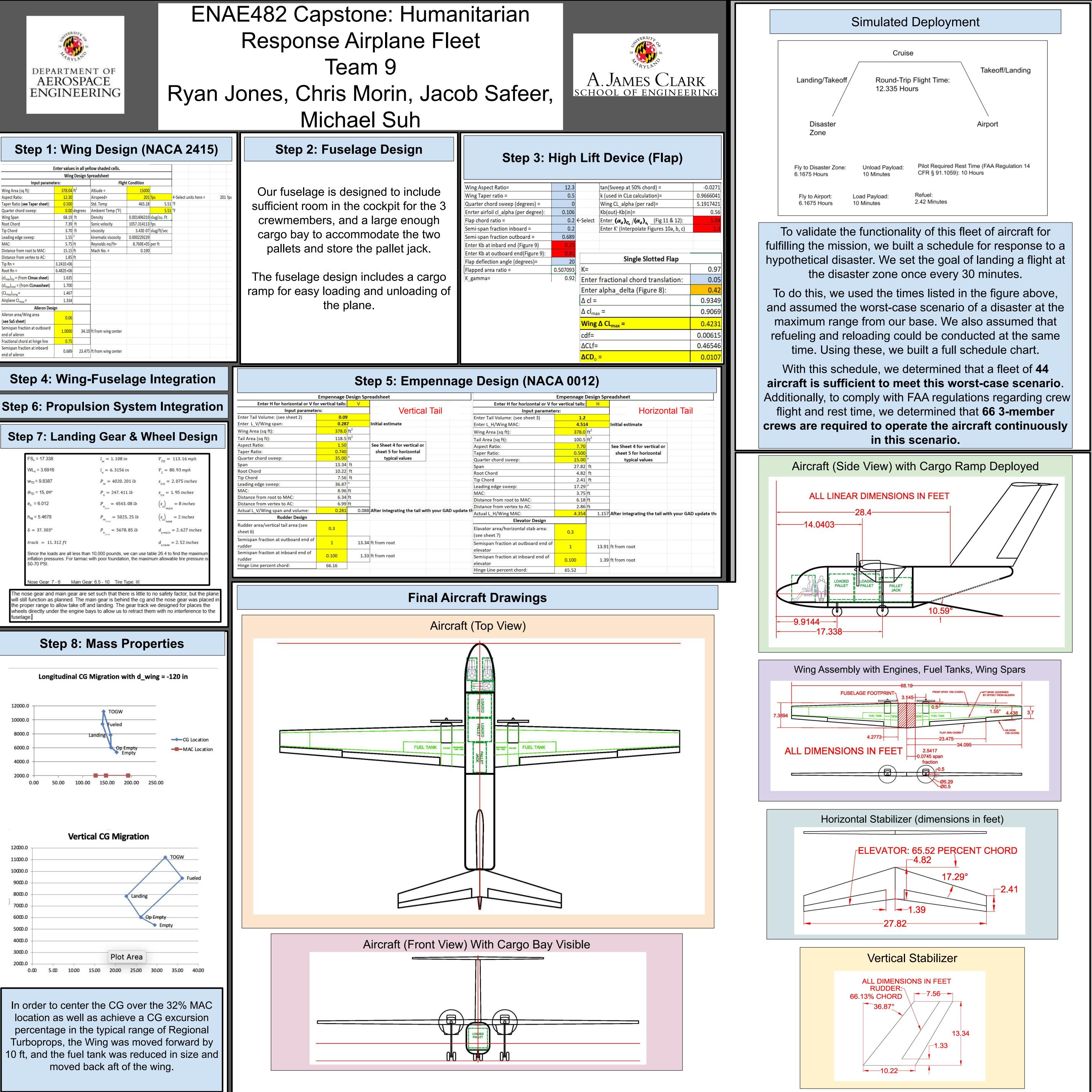
In recent years, climate change has increased the frequency of disaster events of all kinds, and floods and forest fires represent some of the most pressing threats - floods represent 40 percent of all disasters, and forest fires burn twice as much annually than they did only 20 years ago. Accordingly, it is important to implement a system that can provide relief to people affected by these disasters.

The Humanitarian Response Airplane Fleet project aims to design a globally distributed fleet of aircraft capable of rapidly delivering essential supplies—such as medical kits, fresh water, and nonperishable food—to areas affected by natural disasters including floods, fires, earthquakes, and tornadoes. Leveraging existing municipal and rural airfields near disaster-prone regions, the fleet will utilize a twin-engine aircraft with short takeoff and landing (STOL) capabilities to operate efficiently in constrained environments. Each aircraft will be crewed by a captain, first officer, and load master, and designed to carry 1,500 lbs of palletized cargo along with onboard loading equipment for autonomous operations. With a mission radius of 800 miles, cruising altitudes between 10,000–15,000 ft, and an operational ceiling of 30,000 ft, the aircraft must also reserve fuel for loitering and return flights. This fleet will serve as a vital logistical backbone for first responders, ensuring timely and reliable delivery of life-saving resources to isolated or displaced communities.

Conceptual Design Process Overview

Table of Parameters							
Parameter	Value	Range and/or Source	6				
Clean Maximum Lift Coefficient	1.4	Acceptable range: 1.2 - 1.4 (Ch. 7 Appendix D)					
Flap ΔCL_{Max} (Takeoff)	0.42	Typical for single-slotted flaps (Ch. 7 Appendix D)	23				
Flap ∆CD₀ (Takeoff)	0.01	Typical for single-slotted flaps (Ch. 7 Appendix D)	3				
Landing Gear ∆CD₀	0.02	0.0135 - 0.0218 (Ch. 7 Appendix D); 0.02 suggested starting point	N 10 10				
Flap ΔCL_{Max} (Landing)	0.90	Typical for single-slotted flaps (Ch. 7 Appendix D)					
Flap ∆CD₀ (Landing)	0.08	Typical for single-slotted flaps (Ch. 7 Appendix D)	_				
Round-out Load Factor	1.2	1.2 is most common (Ch. 9 pg 2)					
Propeller Efficiency	0.75	Reasonable assumption (Ch. 7 Appendix D)	1				
Coefficient of Braking Friction	0.5	Typically 0.4 - 0.5 on dry pavement (Ch. 9 pg 4)	8				
Landing Approach Stall Margin (fraction)	0.3	FAA regulation	1				
Landing Approach Flight Path Angle (degrees)	-3	FAA regulation					
Takeoff Distance (Xto)	2250 ft	Based on the project specification					
Takeoff and Landing Altitude	0 to 5000 ft	Use 0 ft for fuel fraction; 5000 ft for P/W and T/W calculations					
Oswald Efficiency (e)	0.8	0.70 - 0.86 (Ch. 7 pg 4); 0.8 is a good starting point for twin-engine prop					
Aspect Ratio (AR)	12.3	8.6 - 12.3 (Ch. 7 Appendix D); High AR preferred for better aerodynamics					
Clean Zero Lift Drag Coefficient (CD ₀)	0.0218	0.0218 - 0.0323 (Ch. 7 Appendix D); chose the lower end of the range					
Critical Altitude	10,000 ft	Notes	3				
Payload Weight	2447 lbs	1500(cargo) + 690(crew + luggage) + 257(cargo handling equipment)					

Conceptual Design Results	
Parameter	Value
Takeoff Gross Weight	9451 lb
Empty Weight	5390 lb
Fuel Weight	1621 lb
Wing Span	68.2 ft
Chord Length	5.54 ft
Wing Area	378.04 ft ²
Wing Loading	25 lb/ft ²
Specific Power Required	0.0817-0.094 Hp/lb
Flight Time	12 hr 20 min
Growth Factor	3.873
Risk Assessment	Moderate
Engine Name	Allison 250-B17
Specific Fuel Consumption	0.657
Rated Power	400 HP
Airspeed	201 fps


Specific Power in Takeoff, Landing, and Operational

The first step in our process was to come up with a conceptual design of our airplane, and to define the mission more carefully. The tables above and images at right show the results of our conceptual design.

This phase of the project led us to choose a high-wing regional turboprop aircraft to design in full.

needed of each type of supply. These packages are packed onto pallets by stacking the packages. 10 of these packages fit within the allotted cargo weight, on 2 pallets; 13 additional jugs of water can be stocked separately without exceeding the designed cargo weight. A pallet jack is included to facilitate loading and unloading.

	Wing	g Design		
Input parameters:				
Wing Area (sq ft):	378.04	ft ²		
Aspect Ratio:	12.30			
Taper Ratio (see Taper sheet):	0.500			
Quarter chord sweep:	0.00	degree		
Wing Span	68.19	ft		
Root Chord	7.39	ft		
Tip Chord	3.70	ft		
Leading edge sweep:	1.55	0		
MAC:	5.75	ft		
Distance from root to MAC:	15.15	ft		
Distance from vertex to AC:	1.85	ft		
Tip <mark>R</mark> n =	3.241E+06			
Root Rn =	6.482E+06			
(cl _{max}) _{tip} = (from Clmax sheet)	1.635			
(cl _{max}) _{root} = (from CLmaxsheet)	1.700			
(CL _{max}) _{wing} =	1.467			
Airplane CL _{max} =	1.334			
Aileron Desig	gn			
Aileron area/Wing area	0.06			
(see SaS sheet)	0.00			
Semispan fraction at outboard	1.0000	34		
end of aileron	- 200 CON 5.000	54		
Fractional chord at hinge line	0.75			
Semispan fraction at inboard	0.689	23.4		
end of aileron	0.005	201		
		_		

12000.0		
10000.0		
8000.0		
6000.0		
4000.0		
2000.0		
0.00	50.00	100.

	1200.0			
	11000.0	 		
	10000.0			
	9000.0			
	8000.0			
ļ	7000.0			
	6000.0			
	5000.0			
	4000.0			
	3000.0			
	2000.0			-
	0.00	5.00	10.	00