

DEPARTMENT OF ELECTRICAL &

This project presents a design for a Radar Altimeter intended to measure sea and ice heights based on the European Remote-Sensing Satellite-1, modified to work at an altitude of 1000 km. The design incorporates a Traveling Wave Tube to amplify the RF input signal and an antenna to direct it towards the earth, along with the necessary power supply, cooling systems, and waveguides.

Power Input

The radar altimeter will be powered through solar, which will be connected to an onboard 28 V battery. This battery then powers two separate conversion systems to supply the RF input source and the different voltages needed to collect electrons from the source beam.

RF Input Source

From the battery, voltage is stepped down to 5/3.3/1 V. The RF input source provides the RF signal to be amplified by the TWT and is comprised of a chirp generator, local oscillator mixer, and band pass filter. Pulse gating is used to separate the RF signal, which is then amplified to a set gain and connected to the TWT with a coaxial cable.

A current-fed push-pull converter with a flyback inductor is used to generate the three collector voltages to achieve a TWT 65% efficiency:

- Collector I: 1 kV
- Collector II: 1.4 kV
- Collector III: 1.7 kV

heater **Electron Gun**

408W - Team One **Satellite Radar Altimeter**

COMPUTER ENGINEERING Kelly Cusick, Abi Guicheteau, Garima Gupta, Andrew Ryland, A. JAMES CLARK SCHOOL OF ENGINEERING Abigail Smith, Lynn Sunderman, Nicholas Venginickal

Problem Definition

The electron gun emits a 125 mA, 2 kV beam from a 1.8 mm cathode. It passes through a Pierce electrode and anode inside a pre-baked, metal-ceramic vacuum envelope maintained at $\leq 10^{-7}$ torr. A compression ratio of 1.63 reduces the beam diameter to ~1.41 mm, delivering 250 W of beam power.

