DEPARTMENT OF MECHANICAL ENGINEERING

Problem Definition

Play is recognized as a fundamental right for all children. The act of engaging in various forms of play is a crucial mode of learning through which children can develop physically, socially, and emotionally.

There is a clear need to increase the accessibility features of many playgrounds that lead to inclusivity for children of all mobility levels.

"Nothing excludes children more than having the special piece of equipment that everyone wants to play on be inaccessible to some. Ensure that the coolest play activity is usable by all."

– Inclusive Play Design Guide

Design Calculations & Analysis

Transmission Governing Equations:

\bullet	Given \Rightarrow Gear ratio: 1296:1 Output torque: 7801.92 ft-lb	
	• Eq1: $i = 1 + Z_{ring} / Z_{sun}$ Stage 1 & 2 Stage 3 & 4	
	• Eq2: $Z_{ring} = Z_{sun} + 2 * Z_{planet}$ $Z_{sun} = 12$ $Z_{sun} = 21$	
	• Eq3: $Z_{\text{sup}} = Z_{\text{ring}} / 3$ $Z_{\text{planet}} = 24$ $Z_{\text{planet}} = 42$	
	• Geometrical Validation: $Z_{ring} = 60$ $Z_{ring} = 104$	
	($Z_{sun} + Z_{ring}$) / 3 = Whole Number	•
	$\blacksquare Z_n/3 = Whole Number$	Spo
lacksquare	Bore Diameter:	
	• F.S. = Sys / τ max Stage 1:0.5 in Stage 3:1.6 in	
	• $\tau \max = (T * (d/2)) / J$ Stage 2:0.9 in Stage 4:2.75 in	
Solar Energy Calculations:		
•	Battery life:	
	 3 kWh battery capacity / 1.5 kW power draw = 2 hours 	
	of continuous run time	Defl
	Time to Recharge (Assuming 4 m ² of solar panels in park):	resu
	 Avg kWh/m² per day in MD (Mar-Nov): 4.51 kWh 	Min
	O 3 kWh/(4*4.51 kWh/day) = approximately 4 hours to	Max
	recharge fully Rey $z \neq x$ cow	
Sh	aft Deflection:	
•	Governing Equations:	
	$\circ M_e = W_T(x_2 + x_3)$	
	$\circ M_f = W_T(X_3)$	
	$\circ \sigma_{bending} = (M^* (d/2)) / I$	
	Shaft Diameter = 2.5 in Rfy	

Team 10 The Platinum Engineers Amir Ahmed, Gabriel Assan, Kyle Downer, Ali Marvi, Ahmed Megahed, Stephanie Tsitsiwu

oke FEA:

lection ults: n: 0 mm x: **5.02 mm**

Carriage FEA:

Deflection results: Min: 0 mm Max: **2.66 mm**

A. JAMES CLARK SCHOOL OF ENGINEERING

Final Design

Prototype & Test Results

Tests required for full-scale design:

- *IV-Curve Tracer Test:* • To ensure solar charging ability is functional and efficient
- Shaft Deflection Test
 - Using a Instron machine to ensure structural integrity of the load-bearing shafts
- *Maximum inclination test:*
 - Using an inclinometer in the carriage to ensure slope stays below 1:12, per ADA guides
- Vibration control test:
 - Using an accelerometer to ensure critical damping during braking periods

