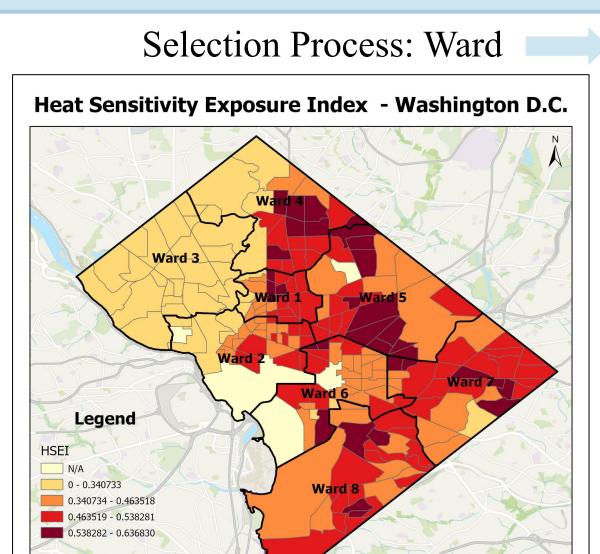
CIVIL AND ENVIRONMENTAL ENGINEERING DEPARTMENT

Reducing Heat Exposure for Metrobus Riders in Washington, D.C.

CEE Team 16 - FTA1-2

Ethan Nickoles, Daniel Oberholtzer, Colleen Rogers, Will Yi


Project Description

Introduction: In July 2023, our planet reached unprecedented temperatures for four consecutive days in a row and set a record for the hottest day ever recorded. In conjunction with the urban heat island effect - a phenomenon where metropolitan development replaces green space - individuals who spend more time outdoors, such as those waiting at bus stops, are particularly vulnerable.

Goal and Objective:

The Designing a Cooler Bus Stop project seeks to reduce heat exposure for Metrobus users through the redesign of an existing bus shelter. The team's objective is to reduce the mean radiant temperature (MRT) of the selected bus shelter by 10° F.

Area of Interest

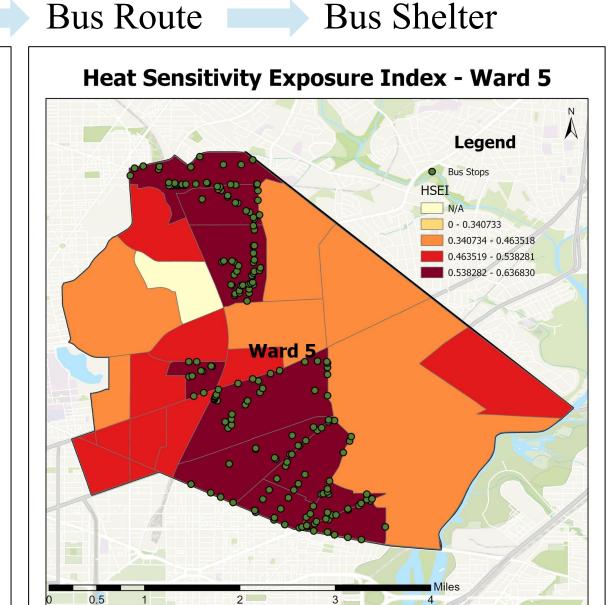


Figure 1. HSEI Map - District of Columbia

Figure 2. HSEI Map - Ward 5

Bus Route Decision Matrix							
Bus Route	% Stops in HSEI Zones	Line Benefit Score	Line Grade	Line Grade Score	Final Score		
D8	59.70	28	С	20	39.08		
80	30.77	42	С	20	33.11		
E2	45.61	14	В	30	29.85		
S41	80.00	7	-	0	34.80		
D4	39.58	29	С	20	31.43		
Weight	0.4	0.4	-	0.2	-		

Table 1: Selected Routes and their Final Scores

Bus Shelter Decision Matrix: Route D8								
	Tree Cover	Impervious	Mean Air	Final				
Stop ID	(%)	Surfaces (%)	Temperature (°F)	Score				
1001387	18.48	45.79	96.19	79.92				
1001476	18.48	45.79	96.19	79.92				
1001504	12.76	62.24	95.83	85.29				
1001658	17.01	51.7	96.03	81.69				
1001765	17.01	51.7	96.03	81.69				
Weight	0.25	0.25	0.5	_				

Table 2: Selected Bus Shelters and their Final Scores

Figure 3. Google Street View of Selected Bus Shelter

Cooling Strategy Selection

Strategy	Means of Cooling	Decision	Reasoning
Cool Roof	Solar Energy Reflectance	Yes	Capable of 50 - 60° F surface temperature reduction (1)
Green Roof	Urban Shade and Evapotranspiration	No	Structural and maintenance complications
Roof Overhang	Increased Shade Profile	Yes	Properly oriented overhangs can reduce MRT by approximately 12° F (2)
Cool Pavement	Solar Energy Reflectance	No	Increased exposure to solar radiation on pedestrian walkways
Trees and Vegetation	Natural Cover and Evapotranspiration	No	Interferences with utilities, overhead wires, and right-of-way

Table 3. Cooling Strategy Decision Matrix

Resources:

- 1) Center for Climate and Energy Solutions. (2017, November). Resilience Strategies for Extreme Heat. https://www.c2es.org/.
- 2) Middel, A., AlKhaled, S., Schneider, F. A., Hagen, B., & Coseo, P. (2021). 50 Grades of Shade. Bulletin of the American Meteorological Society, 102(9). https://doi.org/10.1175/bams-d-20-0193.1

Structural Analysis

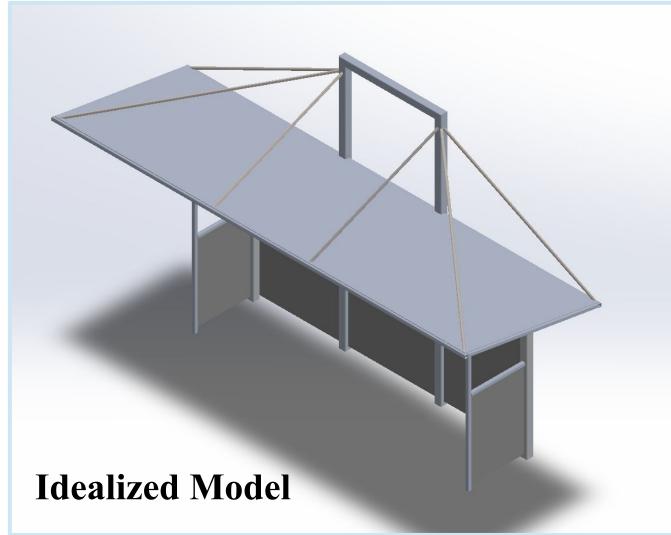


Figure 4. SolidWorks Output of Idealized Model

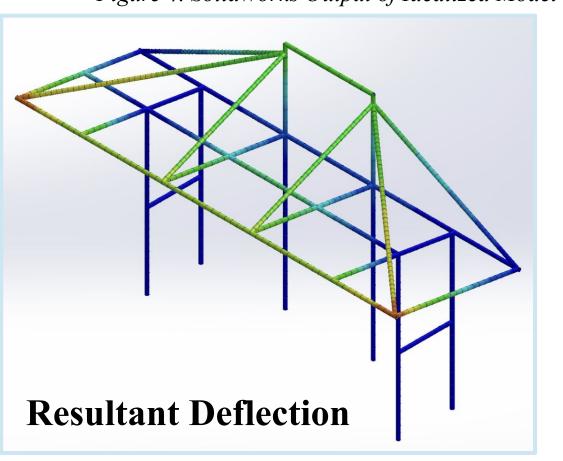
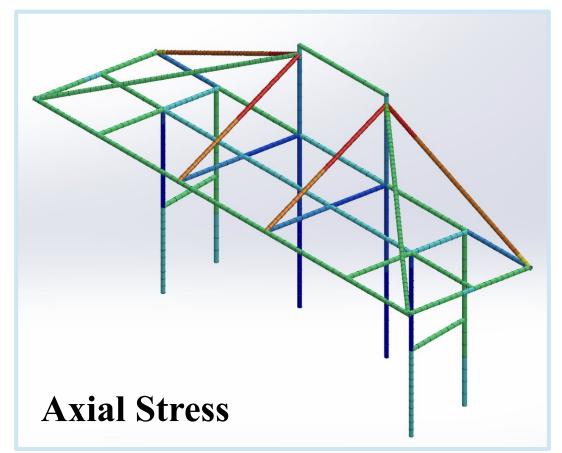



Figure 5. SolidWorks Output of Resultant Deflection

Design Loads

Results

Dead Load: 32.17 ft/s²

Snow Load: 30 psf

Wind Load: 48 psf

Deflection: 0.1"

Safety Factor: 3

Axial Stress: 55 psi

Figure 6. SolidWorks Output of Axial Stress

Proposed Design

Features

- 100% Larger Roof
- Side Ventilation Slats
- Cool Roof Coating
- Solar Panels

Figure 7. Proposed Design in Blender - Front View

Estimated Cost

\$19,140.21

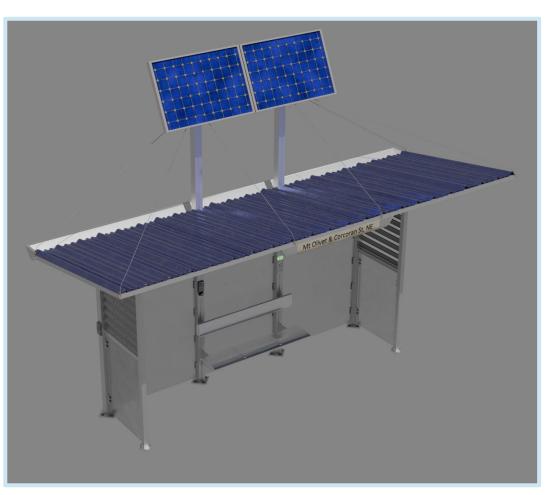
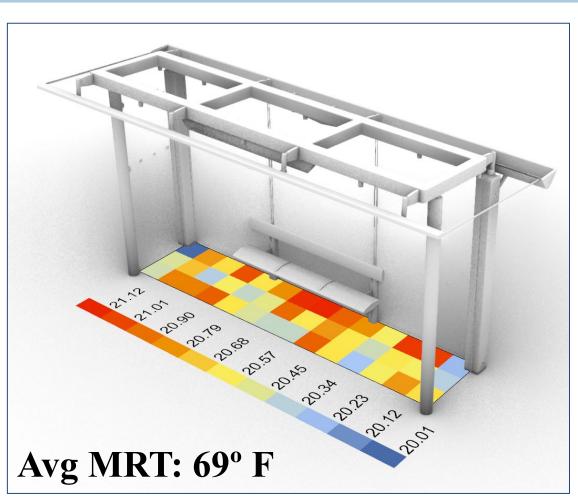



Figure 8. Proposed Design in Blender - Side View

Mean Radiant Temperature Simulations

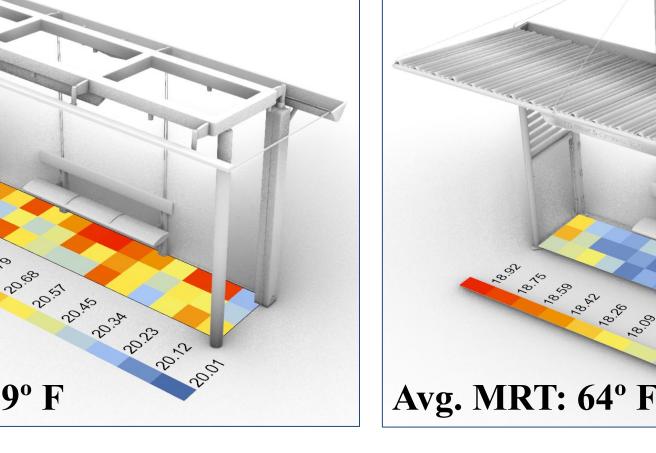


Figure 9. MRT Analysis Rhinoceros 3D - Existing Conditions

Figure 10. MRT Analysis Rhinoceros 3D - Proposed Conditions

Conclusion

Due to simulation limitations, the MRT was not reduced by 10° F. However, prior field studies suggest that a 10° F reduction is feasible.

Recommendations:

- Implement natural shade when feasible
- Construct properly oriented overhangs
- Use heat-mitigating materials, coatings, and films
- Pilot program with full-scale model

Acknowledgements

David Corbliss; Charles Dingboom; Tom Hiles; Patrick Husted; David Kriesberg; Cris B. Liban; Ashley Lickliter; Sean Loewe; Meredith Greene Madrigal; Dr. Ariane Middel; Professor Deb Niemeier; Bonnie Richardson; David Schneider; Dr. Elisabeth Smela; Brasco International Inc.; Federal Transit Administration; Industrial Metal Supply Company; Maple Grove Machining, LLC; Metroll USA; Polymershapes; Terrapin Works; University of Maryland, College Park

