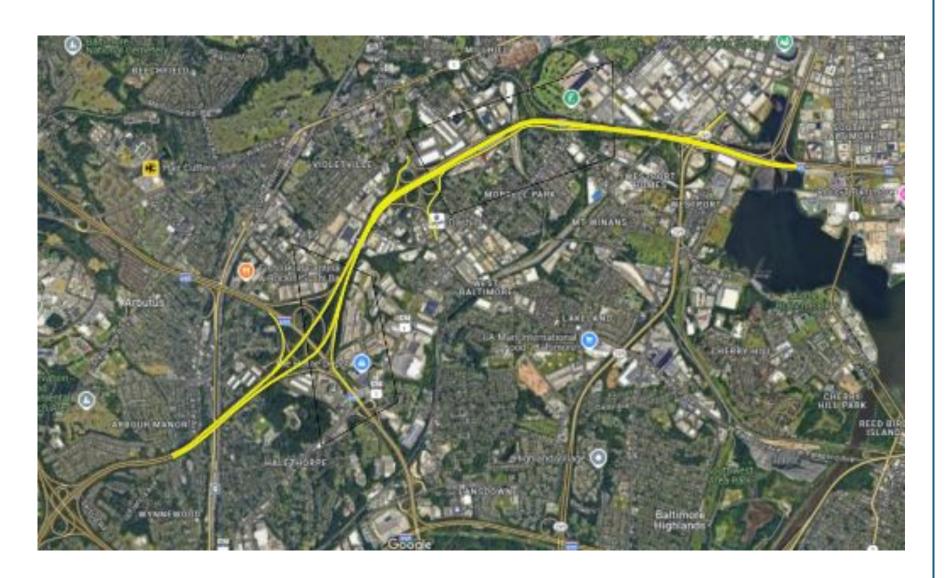
DEPARTMENT OF CIVIL & ENVIRONMENTAL ENGINEERING

Problem Definition

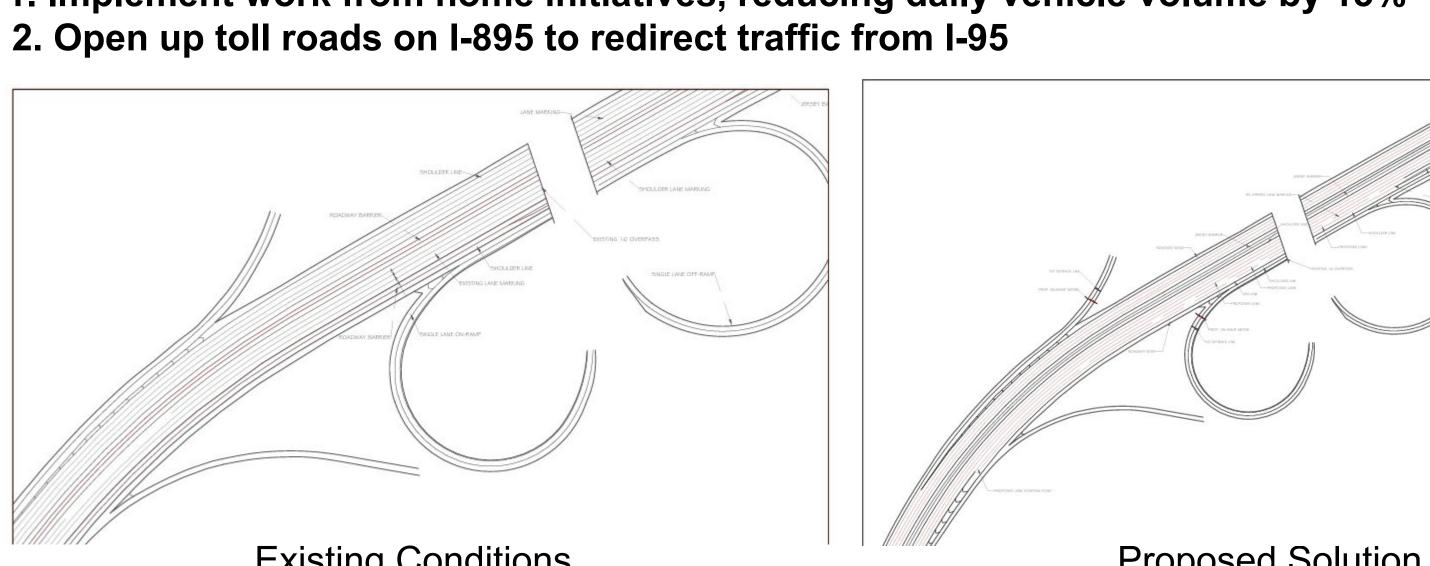
The Francis Scott Key Bridge provided an integral crossing through Baltimore into D.C. As a result of its collapse, daily commuters have been forced to take alternative routes, causing increased levels of traffic congestion, collision rates, and risk to pedestrian safety. Upon analysis of the impacts along three major interstates, I-95 demonstrated high levels of bottleneck locations and collision rates. The study focuses on achieving solutions along a 5 mile stretch of I-95 as well as a busy intersection in downtown Baltimore.

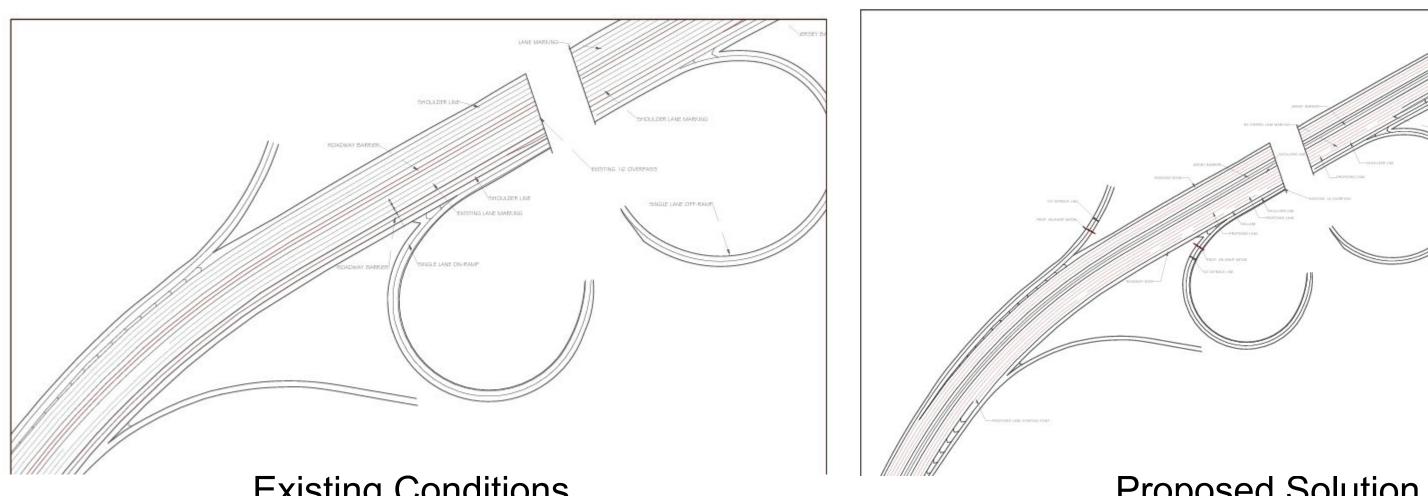
Alternative routes sought out along I-895, I-95, and I-695

Data Collection


Date Range ~	Bottleneck Location 🗸 🗸 🗸	Volume (Veh) 🗸 🗸 🗸	Tr Road 🗸 🗸
3/1/24 - 3/25/24	I-695, MD-372/Wilkens Ave, Exit 12	103931	I-695
	I95 S @ I95 Exit 46	101559	I-95
	195 N, US-1 Alt/Caton Ave Exit 50	97167	I-895
4/1/24-4/15/24	I695, CCW, @ Edmonston Ave/Exit 14	106175	I-695
	I95 N, US-1 Alt/Caton Ave Exit 50	100319	I-95
	I- 895 S @ I95 Exit 46	90295	I-895
7/1/24-7/15/24	I-695 CCW, US-40/Exit 15	102669	I-695
	I-95 N @ US-1, Alt/Caton Ave Exit 50	96374	1-95
	I-895 S @ I-95/62nd Strt/Exit 62	55268	I-895
10/1/24 - 10/15/24	I-695 CCW @ MD-144/Frederick Road/Ex	103559	I-695
10	I-95 N @ US-1, Alt/Caton Ave, Exit 50	96,658	I-95
	I-895 N @ Hollabird Ave/Exit 10	35163	I-895
1/1/25 - 1/15/25	I-695, CCW, @ US-1/Southerwstern Blv/Ex	104138	I-695
	I-95 N @ US-1, Alt/Caton Ave, Exit 50	99421	
	I-895 @ Moravia Road/Exit 14	39350	I895

Congestion Data along I-895, I-695, and I-95


Day 1	Total Bike	Total Scoote	r Total Jayv	valk	Day 3		Total Bik	e	Total Scooter	Total Jaywall
	26	2	5	44	Compliant		-	31	32	2:
	31	1	3		Obstinate			10	15	
Total	57	3	8		Total			41	47	
Percent jaywalk	54.386	34.21	1		Percent jay	walk	24.3	390	31.915	
Percent Jay-walki	ng Pedestrians:	32.10%	6		Percent Jay	-wall	king Pedestr	ians	30.70%	
	D	ay 2 1	fotal Bike	Tot	al Scooter	Tota	l Jaywalk			
	Compli	ant	33		27		13			
	Obstinate		6		7					
	Total		39		34					
	Percent	jaywalk	15.385		20.588					
Percent Jay-walking Pedes		Pedestrians:		33.00%						
		Bike			Scooter			Ia	vwalk	

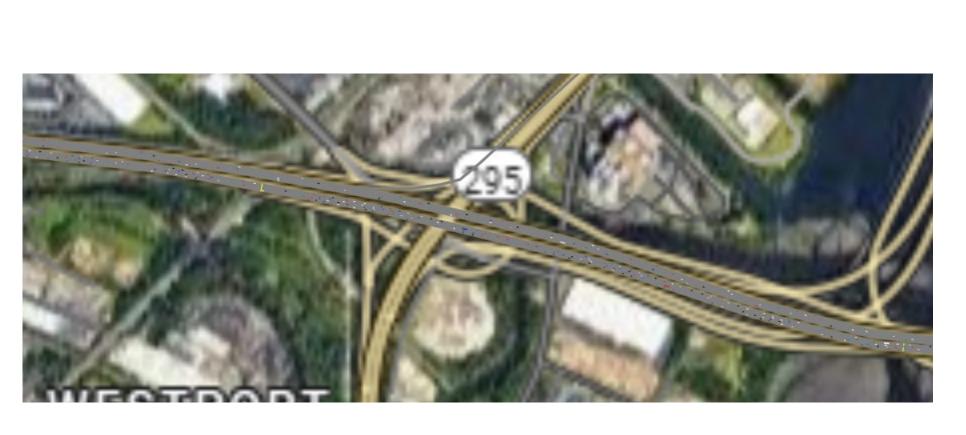

	BIKe	Scooter	Jaywaik
Final Total	137	119	82
Percentage Jay	valking		0.32
a Ala estiar	1.32233		

Pedestrian Safety Data along Pratt St. and Charles St. Intersection

VISSIM Simulation

West Pratt Street Design Implementations

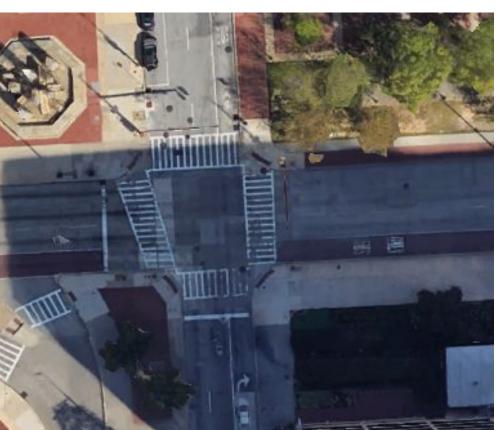
C16MOBILITY 1 Maryam Abbas, Tyler Cassidy, Ekaterina Deadrick, Jordan Manalang


Congestion along I-95N and I-95S during afternoon rush hour

Intersection along Pratt St. and Charles St. in downtown Baltimore, Site for **Pedestrian Safety Study**

Proposed Solutions

1. Implement work from home initiatives, reducing daily vehicle volume by 15%


Existing Conditions **Proposed Solution** 3. Remove jersey barrier along 1/2 mile stretch of bottleneck location on I-95 North

Simulation Conditions After

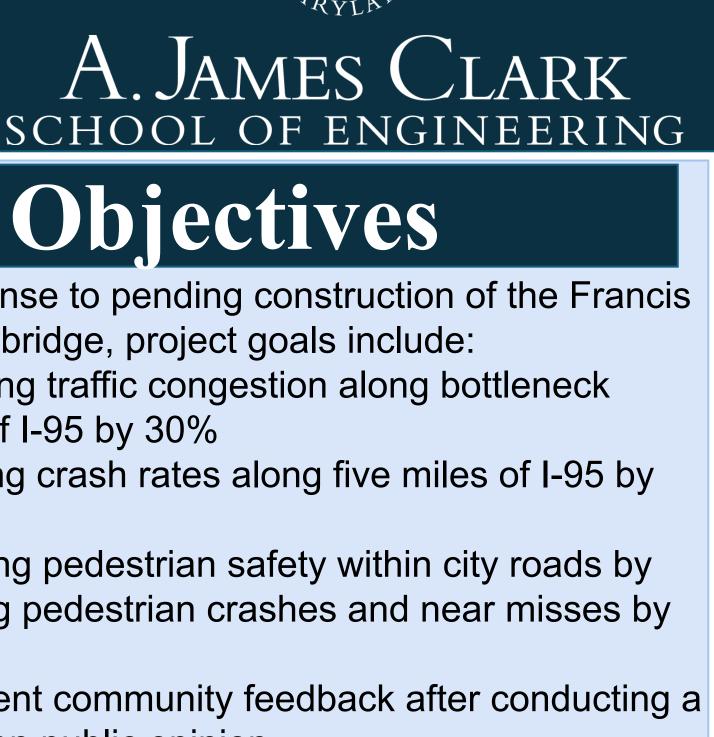
As part of the responses received in our survey reaching out to community members commuting through Baltimore, the first implemented solution reduces vehicle volume by encouraging work from home initiatives. Additional responses from a survey conducted by Yang et.al found that commuters would also prefer to take toll roads if the toll were eliminated. With the combination of all four solutions, the simulated results demonstrated reduced congestion.. Based on observed pedestrian behavior, implemented solutions for pedestrian safety include protected bike lanes throughout inner city roads. Additionally, at the West Pratt St. and Charles St. intersection, a proposed relocation of a crosswalk reduces congestion on the road caused by entering vehicles yielding to pedestrians

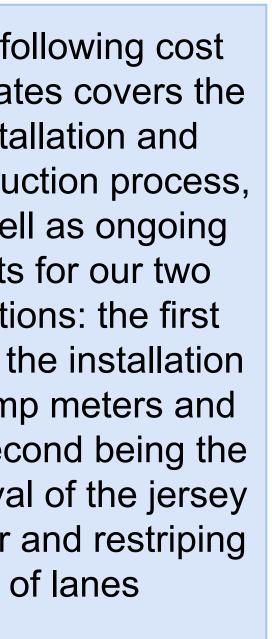
Objectives

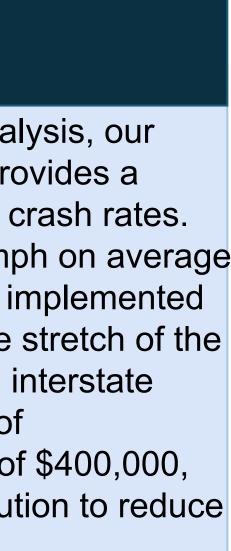
As a response to pending construction of the Francis Scott Key bridge, project goals include:

- Reducing traffic congestion along bottleneck points of I-95 by 30%
- Reducing crash rates along five miles of I-95 by 30%
- Improving pedestrian safety within city roads by reducing pedestrian crashes and near misses by 30%
- Implement community feedback after conducting a survey on public opinion

Cost Estimate


Installation & Construction Costs 🛛 🗸	Cost for a 1 lane on-ramp v	Total cost for all on-ramps (7) $$	Payback Pe 🗸
Ramp meter hardware	\$50,000 - \$75,000	\$350,000 - \$525,000	5 months
Freeway Sensors	\$6,500	\$45,500	
End-of-Queue sensors	\$100	\$700	
Software and system integration	\$200,000	\$1,400,000	
Total =	\$256,600 - \$281,600	\$1,796,200 - \$1,971,200	
On-going Costs	Cost for a 1 lane on-ramp	Total cost for all on-ramps (7)	
Maintenance	\$1,000 - \$3,000	\$7,000 - \$21,000	5 months
Operating Costs	\$3,195	\$22,365	
Staffing	\$17,825	\$124,775	
Traffic signal retiming (every 3-5 years)	\$1,000 - \$8,000	\$7,000 - \$56,000	
Total =	\$23,020 - \$32,020	\$161,140 - \$224,140	
	Total cost =	\$1,957,340 - \$2,195,340	


Total cost = $$1,95$	57,340 - \$2,195,3


		Lane Addition Takeoff			
	Unit	# of units	\$/unit	Cost	The fo
Demo					
Dump Truck	Each	1	4850	4850	estimat
Jersey Wall Clamp	Each	1	285	285	
Boom Truck	Each	1	3310	3310	insta
Concrete Barrier	Foot	2640	18	47520	constru
Labor	Hour	300	20	6000	CONSUL
				\$61,965.00	as we
Restriping Crew					
Striping Foreman	hour	24	65	1560	costs
Striping Machine Operator	hour	24	55	1320	ooluti
Laborers	hour	120	40	4800	soluti
Traffic Control Supervisor	hour	24	50	1200	being t
Flaggers	hour	48	25	1200	
				\$10,080.00	of ram
Restriping Equipment					_
Striping Truck	day	3	750	2250	the sec
Support Truck	day	3	200	600	
Arrow Board Truck	day	3	500	1500	remova
Traffic Control Devices	each	1	300	300	barrier
Pre-Marking Tools	each	1	200	200	Damei
Paint	gal	50	15	750	(
Glass Bead Dispenser	lb	250	0.5	125	
				\$5,725.00	
			Total Cost:	\$165,620.00	

Conclusion

Based on the results of our simulation and cost analysis, our proposed solution for the five mile stretch of I-95 provides a feasible relief in congestion as well as reduction in crash rates. The average travel speed was increased from 18mph on average during peak rush hour, to a flow of 35mph with the implemented solutions. While queue lengths increased along the stretch of the metered on-ramps, the overall flow of traffic on the interstate remained steady. With a project construction cost of approximately \$2 million as well as ongoing costs of \$400,000, the proposed improvements provide a feasible solution to reduce the impacts of the Key Bridge collapse

