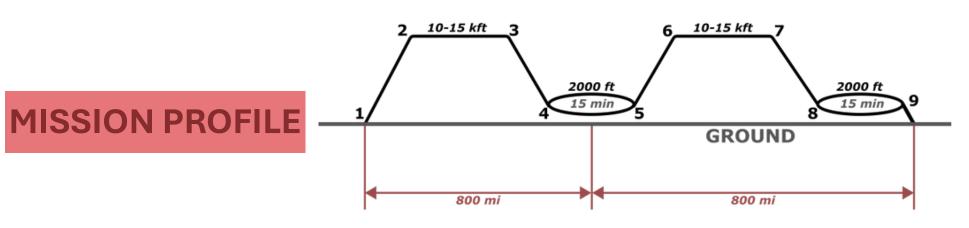
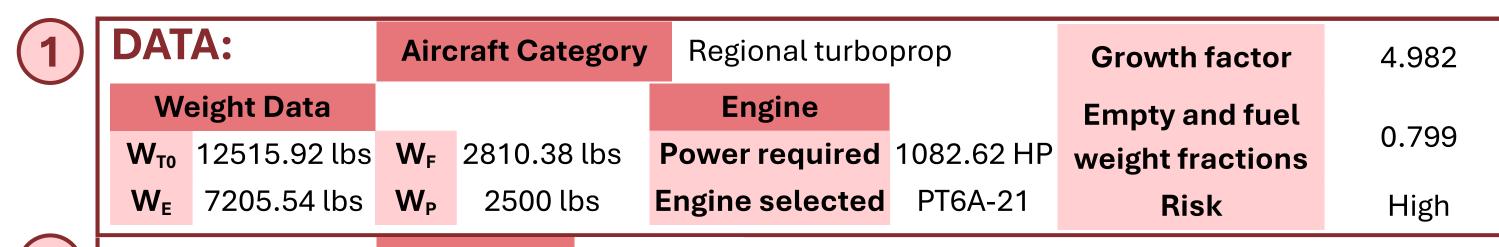
ENAE482 CAPSTONE: TEAM 6

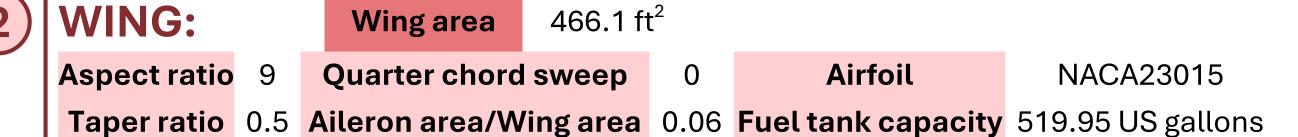
First Emergency Responder Airplane Fleet

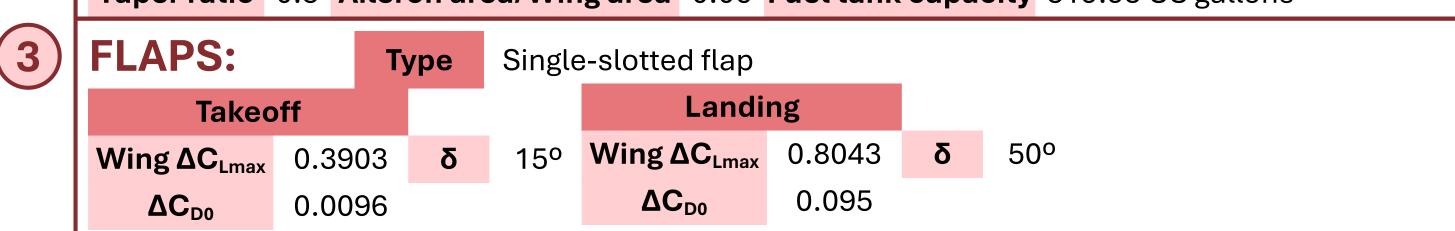


Laura Monton – Alicia Rodriguez – Ana Rodriguez – Marcos Zapata

PROBLEM DEFINITION

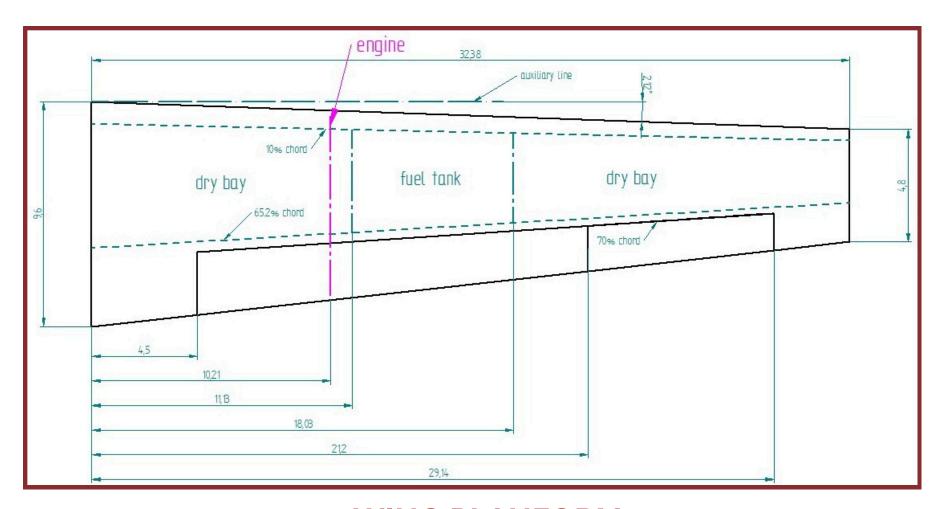

During the last decades, natural disasters on Earth including floods, fires, tornados and earthquakes have increased making people requiring of aid. The objective of this project is to address natural disaster relief with a fleet of airplanes that are specifically designed to continuously provide humanitarian aid, including fresh water, food and medical resources.


The airplane must be able to respond to short takeoff and landing (STOL) capability from tarmac runways, it must have efficient cargo transport as well as reliable operation in different environments and unforeseen conditions.

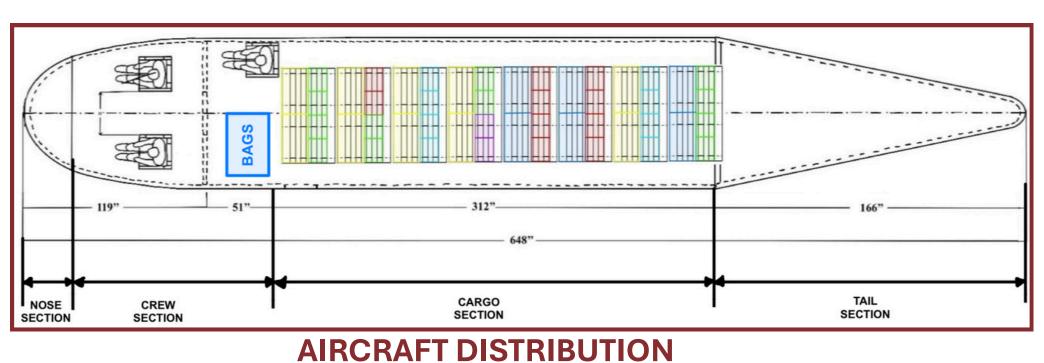


REQUIREMENTS									
Field Perfo	Cargo								
Takeoff/Landing altitude	2,250 - 5000 fts MSL	Crew	600 lbs						
Day Temperature	90 °F	Bags	90 lbs						
Physical Co	Total cargo allocation	1500 lbs							
Wingspan	Engin	е							
Special perf	Certified and readily								
Operational ceiling	30.000 ft								

DESIGN CALCULATIONS & ANALYSIS



4	VERTICAL	EMI	PENNAGE:	Tai	l volum	e 0.069	
	Aspect ratio	1.5	Quarter chord sweep		15°	Airfoil	NACA 64-012
	Taper ratio	0.5	Rudder area/ Tail area		0.3	L _v /b	0.375


5	HORIZON'	TAL	EMPENNAGE:	Tail volume		0.995	
	Aspect ratio	6	Quarter chord sweep	12°	Airf	oil	NACA 0010
	Taper ratio	0.8	Elevator area/ Tail area	0.33	L _H /(M	AC) _w	3.643

	As	Aspect ratio 6 Quart						129	Airfoil	NACA 00	010
	Taper ratio 0.8 Elevated 0.8 Main Gear 0.8 0.8 Elevated 0.8 0.8		ato	0.3	3 L _H /(MAC			3.643			
			1 cg	62.2 inches Track 106.43 inches			106.43 inche	es .			
				6.189 inches		Nose Gear		S _s	1.302 inches		
	l _m	16.67 inches	6	Tire		15,00-10 rated at 8850 lbs (type III)		l n	150 inches	Tire	9,00-6 rated at 4000 lbs (type III)
	P _m	6698.27 lbs	Tire	diamet	er	34.8 inches	-	Pn	2750.54 lbs	Tire diameter	22.4 inches

Parameters	Conceptual	Preliminary	Parameters	Conceptual	Preliminary
Clean zero lift drag	0.02705	0.02705	Flap Lift Increment for Landing	0.9	0.8043
Wing Aspect Ratio	9	9	Flap Drag Increment for Landing	0.08	0.095
Span efficiency	0.8	0.82	Propeller efficiency	0.75	0.75
Clean maximum lift coefficient	1.3	1.328	SFC	0.63	0.63
Drag increment due to LG.	0.02	0.02	Wing Area	472.2988	467.4081
Flap Lift Increment for Takeoff	0.42	0.3903	Power Required	1082.63	1071.42
Flap Drag Increment for Takeoff	0.01	0.0096	TOGW	12515.92	12386.31

WING PLANFORM

950 FS 679.72 FS 692.08 FS 741.16 **TOP VIEW**

BACK VIEW (WITH CARGO RAMP DEPLOYED)

SIDE VIEW

RESULTS

- Natural disaster problem: Volcanic eruption on La Palma, Spain. 7,000 people affected.
- Distance from base: 800 milles
- Cruise Speed: 182 KTS (209.5 mph) at an altitude of 12,500 fts.
- Transit time (one-way): 4h 10 min

CARGO DISPLAY

ENTRÉE KIT

- Turn-around time: 25-30 minutes
- Refuel time: Single-point pressure refuel ———— 8-10 min
- 1 airplane total time = 2 × Transit + Turn-around + Refuel / Reload ≈ 9h

- Scenario: Each aircraft can help 60 people with the supplies given each time it arrives to the island. Families have supplies for 2 days with the help given. In 2 days, each airplane can make 5 sorties (48h / 9h \approx 5.33 sorties). Therefore, each aircraft would be able to help 60 people x 5 sorties / per 2 days = 300 people. $7000/300 \approx 24$ aircrafts.
- Fleet size: 25 aircrafts (taking into account an extra one in case needed).
- Crewing: Each airplane requires a 3-person crew (captain, first-officer, load-master). Taking into account each crew must rest during 10 hours, 3 crews per aircraft would be needed.
- Total numbers of crews: 25 aircrafts x 3 crews = 75 3member crews (without including ground-staff).

Entrée kit (food). Emergency medical kit .

EACH AIRCRAFT AID (for 60 people)

Payload per sortie: 1500 lbs

- 555 lbs of food supplies (~4.5lbs per person per day) → food for 2 days
- 240L of water (~2L per day per person) water for 2 days
- 30 medical kits → 1 per family