

Draco: The Hydrogen-Powered eVTOL (AHS) 42nd Annual Vertical Flight Society Student Design Competition Ishmael Agui, Ron Berlin, Colby Cotoia, Joshua Katz, Billy Lee, Isaiah Lee, Samuel Renz

Problem Definition

This year's challenge:

Design a passenger-carrying electric VTOL powered by gaseous hydrogen via Proton Exchange Membrane Fuel Cells (PEMFC).

Major Challenges of PEMFC:

- Brand new technology—many unknowns
- Realism and practicality
- Safety and reliability
- Higher cost, weight, and volume of components versus conventional engines

Our design philosophy:

Use reliable, proven VTOL design concepts, with hydrogen power as the only unknown variable.

Mission Requirements

Figure 1. Mission Profile

Final Design

Figure 2. CAD Model of Draco

Inspired by our mission to observe wildlife in Alligator Lake, we named our design **Draco** — after the flying reptiles known for their efficient flight. Designed for agile, long-endurance observation, **Draco** is powered by zero-emission hydrogen fuel cells. Its streamlined design combines performance and environmental responsibility in the pursuit of exploration.

Figure 3. 3D Drawing of Internal Views

Design and Configuration

Mechanical simplicity and power requirements were major drivers in our design choices.

Figure 4. Power Velocity Curve by Configuration

Parameters	Lift Compounded SMR	Lift-' Comp S
Cruise Power [kW, (hp)]	47 (63)	38
Fuel Weight [kg, (lb)]	11.7 (25.8)	9.66
Loiter Time	166	1

Lift Compounded Single Main Rotor:

• Low power in loiter compared to SMR • Simplicity: no pusher propellers, lighter

than Lift+Thrust Compound • Best choice to meet the customer's needs

and maximize our loiter endurance

Draco: The Hydrogen-Powered eVTOL Ishmael Agui, Ron Berlin, Colby Cotoia, Joshua Katz, Billy Lee, Isaiah Lee, Samuel Renz

[1] Datta, Anubhav. 2021. "PEM Fuel Cell Model for Conceptual Design of Hydrogen eVTOL Aircraft." NASA Technical Reports. https://ntrs.nasa.gov/citations/20210000284.

