Team B9: Accessible Ventilation Coach for Opioid Overdose Bystanders

Kelly Yeung, Colton Houldsworth, Adam Bizri, Ashani Ross, Ashley Armitage, Calvin Le

Advisors: Dr. Jason Rose, University of Maryland Baltimore; Dr. Ian White, University of Maryland

Motivation

Need for accessible and cost effective method to help overdose victims

- 110,000 drug overdose deaths in the US in 2023
- Main cause of death from opioid overdose is respiratory failure
- EMS response takes 7-14 minutes
- Currently no safe bystander options for ventilation

Solution

Develop an adjunctive device to the Bag Valve Mask to coach and empower bystanders to perform rescue breaths to overdose victims safely and effectively

- < 225 grams
- > 25 min battery life
- < $30 at production scale
- Coach 500ml compression
- Guide 15 breaths/min
- Instruct 'E-C Seal'

Methods

Device Calibration Using Lung Simulator

- Squeeze 100-500ml 10 times per deciliter
- Record volume output from Test Lung
- Record analog value from potentiometer
- Use equation to calibrate feedback
- Perform pilot user performance study

Figure 1. Drug Overdose Death Count in the US

Results

Objectives

- Revolutionize untrained bystander opioid overdose management
 - Reduce overdose mortality rates
 - Provide emergency care for patients in respiratory arrest
 - Affordable solution distributed with opioid prescription
 - Provide increased usability and safety for manual resuscitation

Bioethical Implications

- Data indicates that audio and visual feedback support bystander confidence and patient safety when performing rescue breaths

Conclusion & Future Work

Plag test involving 6 participants showed increase in BVM user efficacy when using device

- Accomplished all 6 design objectives

Testing & Validation

- Perform large-scale user performance feedback study
- Iterate design with feedback

Commercialization

- File provisional patent
- Consult contract manufacturing organization
- Patent & trademark
- 510k regulatory pathway

References

Figure 2. Michigan Test Lung

Figure 3. Relationship Between Measured Volume and Device Reading

Figure 4. Michigan Test Lung Volume Output

Figure 5. Pilot Test Compression Rate

Figure 6. Pilot Test Volume Output